A Decomposition-Based Interactive Method for Multi-Objective Evolutionary Algorithm

Nguye Long, Bui Thu Lam

Abstract


Multi-objectivity has existed in many real-world optimization problems. In most multi-objective cases, objectives are often conflicting, there is no single solution being optimal with regards to all objectives. These problems are called Multi-objective Optimization Problems (MOPs). To date, there have been al large number of methods for solving MOPs including evolutionary methods (namly Multi-objective Evolutionary Algorithms MOEAs). With the use of a population of solutions for searching. MOEAs are naturally suitable for approximating optimal solutions (called the Pareto Optimal Set (POS) or the efficient set). There has been a popular trend in MOEAs considering the role of Decision Makers (DMs) during the optimization process (known as the human-in-loop) for checking, analyzing the results and giving the preference to guide the optimization process. This is call the interactive method.




CƠ QUAN CHỦ QUẢN: BỘ THÔNG TIN VÀ TRUYỀN THÔNG (MIC)
Giấp phép số 69/GP-TTĐT cấp ngày 26/12/2014.
Tổng biên tập: Vũ Chí Kiên
Tòa soạn: 110-112, Bà Triệu, Hà Nội; Điện thoại: 04. 37737136; Fax: 04. 37737130; Email: chuyensanbcvt@mic.gov.vn
Ghi rõ nguồn “Tạp chí Công nghệ thông tin và truyền thông” khi phát hành lại thông tin từ website này