Thuật toán khai phá mẫu dãy thường xuyên trọng số chuẩn hóa với khoảng cách thời gian

  • Trần Huy Dương Viện Công nghệ thông tin - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
  • Vũ Đức Thi


In this paper, we propose a method for mining normalized weighted frequent sequential patterns with time intervals, we are not only interested in the number of occurrences of the sequence (the support), but also concerned about their levels of importance (weighted). We use the binding between the support and weight of the set range to candidates in mining normalized weighted frequent sequential patterns with time intervals while maintaining the downward closure property nature which allows a balance between support and the weight of a sequence.

Author Biography

Trần Huy Dương, Viện Công nghệ thông tin - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
Trưởng phòng Công nghệ phần mềm trong quản lý - Viện Công nghệ thông tin - Viện Hàn lâm KH&CN Việt Nam


R.AGRAWAL, AND R.SRIKANT,“Mining sequential patterns”.In Proceedings of the International Conference on Data Engineering (ICDE), pp. 3-14, IEEE Computer Society (1995).

R.AGRAWAL, AND R.SRIKANT,“Mining sequential patterns: generallizations and performance improvements”. Proceedings of the International Conference on Extending DataBase Technology (EDBT), Lecture Notes in Computer Science, Vol. 1057, pp. 3-17 (1996).

J.PEI, J.HAN, B.M.ASI, H.PINO,“PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth”. Proceedings of the Seventeenth International Conference on Data Engineering, pp.215-224 (2001).

M.ZAKI, “An Efficient Algorithm for Mining Frequent Sequences”, Machine Learning, Vol. 40, pp. 31–60, 2000.

J.AYRES, J.GEHRKE, T.YIU,ANDJ.FLANNICK, “Sequential Pattern Mining using Bitmap Representation”, in Proc. of ACM SIGKDD’02, pp. 429–435, 2002.

M.S.KHAN, M. MUYEBA, F. COENEN,“Weighted Association Rule Mining from Binary and Fuzzy Data”. In Proceedings of 8th Industrial Conference, ICDM 2008,pp. 200-212 (2008).

F.TAO, F.MURTAGH, M.FARID,“Weighted Association Rule Mining Using Weighted Support and Significance Framework”. In Proceedings of 9th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 661–666 (2003).

U.YUN,“An efficient mining of weighted frequent patterns with length decreasing support constraints”, Knowledge-Based Systems, Vol. 21, No. 8, pp. 741–752 (2008).

U.YUN, J.J.LEGGETT,“WFIM: weighted frequent itemset mining with a weight range and a minimum weight”, In 5th SIAM Int. Conf. on Data Mining, pp. 636–640 (2005).

Y.HIRATE, H.YAMANA,“Generalized Sequential Pattern Mining with Item Intervals”, JCP,Vol. 1, No. 3, pp. 51-60 (2006).

T.H.DUONG, V.D.THI,“Thuật toán khai phá mẫu dãy thường xuyên với trọng số chuẩn hóa sử dụng CSDL tiền tố”. Kỷ yếu hội nghị Khoa học Quốc gia lần thứ VI – Nghiên cứu cơ bản và ứng dụng CNTT (FAIR), pp. 502-511 (2013).

G.C.LAN, T.P.HONG, H.Y.LEE,“An efficient approach for finding weighted sequential patterns from sequence databases”, Applied Intelligence, Vol. 41, No. 2, pp. 439-452 (2014).

M.T.TRAN, B.LE, B.VO,“Combination of dynamic bit vectors and transaction information for mining frequent closed sequences efficiently”, Engineering Applications of Artificial Intelligence, Vol. 38, pp. 183-189 (2015).

B.VO, F.COENEN,B.LE,“A new method for mining Frequent Weighted Itemsets based on WIT-trees”. Expert Systemswith Applications, Vol. 40, No. 4, pp. 1256-1264 (2013).

U.YUN, G.PYUN, E.YOON,“Efficient Mining of Robust Closed Weighted Sequential Patterns Without Information Loss”, International Journal on Artificial Intelligence Tools, Vol. 24, No. 1, 28 pages (2015).

U.YUN, K.H.RYU,“Approximate weighted frequent pattern mining with/without noisy environments”, Knowledge-Based Systems, Vol. 24, No. 1, pp. 73-82 (2011).

Bài báo