
Research and Development on Information and Communication Technology

Graph Structure and Isomorphism Learning:
A Survey
Tuyen Ho Thi Thanh1,2,3

1 Faculty of Information Technology, University of Science, Ho Chi Minh City, Vietnam
2 Vietnam National University, Ho Chi Minh City, Vietnam
3 University of Economics, Ho Chi Minh City, Vietnam

Correspondence: Tuyen Ho Thi Thanh (tuyenhtt@ueh.edu.vn)
Communication: received xx, revised xx, accepted xx
Digital Object Identifier: 10.32913/mic-ict-research.v2022.n1.1028

Abstract: With the great success of artificial intelligence in
recent years, graph learning is gaining attention from both
academia and industry [1, 2]. The power of graph data is
its capacity to represent numerous complicated structures in
a broad spectrum of application domains including protein
networks, social networks, food webs, molecular structures,
knowledge graphs, sentence dependency trees, and scene
graphs of images. However, designing an effective graph
learning architecture on arbitrary graphs is still an on-
going research topic because of two challenges of learning
complex topological structures of graphs and their nature of
isomorphism. In this work, we aim to summarize and discuss
the latest methods in graph learning, with special attention to
two aspects of structure learning and permutation invariance
learning. The survey starts by reviewing basic concepts on
graph theory and graph signal processing. Next, we provide
systematic categorization of graph learning methods to ad-
dress two aspects above respectively. Finally, we conclude
our paper with discussions and open issues in research and
practice.

Keywords: Graph learning, graph structure learning, graph
isomorphism, permutation invariance, graph neural networks.

I. INTRODUCTION

Graphs are powerful data structures which can be con-
sidered as a general language for describing and model-
ing complex systems [3] in practice. Unlike many other
structures such as images, texts and audios, which only
represent the information of entities, graphs are able to
capture both entities and their interactions via nodes and
edges of graphs. Social networks are typical examples of
graphs whose nodes are users and edges show the existence
of the relationships between two users. As a consequence
of their power, graphs not only play an important role in
computer science but also are ubiquitous in related fields
(e.g., physics, biology, chemistry) with a wide range of
applications: classifying proteins in biological interaction

networks, predicting the influence of an individual in social
networks and discovering new drug molecules.

Basically, a graph consists of two information types: a
feature matrix, denoted by 𝑿, encoding entities and their
properties; and a structural matrix A (such as adjacency
matrix 𝑨, Laplacian matrix 𝑳 and its variants), describing
the relationship between entities. Between such two types,
the structural information is more crucial since object-
object interaction representation is a special characteristic
of graph data and different graphs are distinguishable via
their topological configurations. As a result, learning graph
structure becomes a central problem in graph learning.
However, converting complicated raw structure information
of graphs into compact fixed-size vectors in a continuous
embedding space is non-trivial because of two challenges:
1) graph sizes vary dramatically in practice from several
units and interactions in molecular networks to millions
of objects and connections in social networks, hindering
the invention of effective algorithms to extract compact
representations but not losing important information; and
2) graph isomorphism, where two graphs look different but
are actually the same (Fig 1), causing the requirement of
permutation invariance in designing graph learning frame-
works. The success of handling these challenges is the key
to proceed graph learning field.

To tackle these challenges, tremendous approaches have
been proposed in graph learning, ranging from graph kernel
methods to graph neural networks. In this survey, we
provide an overview of recent advanced learning techniques
on graphs in a comprehensive manner. Our focus is effective
methods that can either learn graph structures or deal with
graph isomorphism.

There exists several previous comprehensive reviews re-
lated to our survey. [5] and [6] provide a thorough overview
of geometric deep learning, a broader area, which attempts

23

Research and Development on Information and Communication Technology

Figure 1. Two identical graphs with different looking structures (adopted
from [4]).

to extend machine learning techniques for non-Euclidean
data including graphs and manifolds. The early work en-
coding the relationships of nodes as embedding vectors in
continuous space refers to node/graph embedding methods
with detailed summary in [7, 8]. For graph learning, some
notable surveys are [1, 9]. Mital Kinderkhedia [9] reviews
over existing graph learning methods and presents them
into kernel methods and graph neural networks. Meanwhile,
Feng Xia et al. [1] systematically categorize the field
into four approaches of graph signal processing, matrix
factorization, random walks and graph neural networks.
With the success of deep learning in images, there have
been many methods employing deep learning techniques
on graphs (aka graph neural networks) in recent years
and the most up-to-date surveys [2, 10–12] mainly focus
on this subfield of graph learning. Zhou Jie et al. [10]
introduce the design pipeline of graph neural networks and
provide a review on different implementations for each
module in the pipeline. [2] and [11] are based on network
architectures to divide graph neural network methods into
groups of graph recurrent neural networks, graph convo-
lution networks, graph autoencoders, graph reinforcement
learning and graph adversarial networks. There have also
been several surveys paying attention to other subfields or
specific topics of graph learning such as kernel methods
[13, 14] or constructing a unified framework for graph
convolutional networks [12]. Although, many reviews on
graph learning have been emerged, they mainly provide
technical views with taxonomies of algorithm designs and
training strategies rather than focusing on the problem-
driven aspect as our work, i.e., solving two key problems
of learning the topology and isomorphism properties of
graphs. To the best of our knowledge, there is little effort to
systematically summarize the field in these directions. One
survey closely related our work is [15] but it only examines
a limited number of works and the paper is equivalent to
our Subsecs. III.2 and III.3.

In this paper, we introduce a different overview of recent
advancements towards solving essential problems in graph

learning. To summarize, our contributions are as follows:

• We introduce two new taxonomies of graph learn-
ing, corresponding to graph structure and permutation
invariance learning. For the graph structure learn-
ing, existing methods are categorized into six main
approaches of graph coloring-based methods, matrix
factorization, node embedding, aggregation operators
and motif-based methods while, to solve the latter of
graph isomorphism, recent works are focusing on four
directions of aggregation function, ordering, histogram
and permutation sampling.

• Comprehensive survey: we provide a detailed review
on numerous methods in the literature with descrip-
tions and discussions on their advantages and disad-
vantages.

• Finally, we discuss on the limitations of existing meth-
ods and propose open problems for future research.

The rest of the paper is structured as follows. Sec. II
presents notations, basic definitions and concepts in graph
learning research, brief introduction of graph signal pro-
cessing, which is the backbone of spectral graph learning
methods, and Weisfeiler-Lehman test, a baseline for graph
isomorphism test. We start to introduce graph structure
learning and its taxonomy in Sec. III. Sec. IV outlines
the approach in graph isomorphism learning and system-
atically summarizes different existing methods. Finally, we
conclude the survey with a discussion on open challenges
and potential future directions in graph learning in Sec. V
and VI.

II. BACKGROUND

1. Notations

In this paper, we use bold uppercase characters to denote
matrices and bold lowercase ones for vectors. For an arbi-
trary matrix 𝑴, we use the notations of 𝑴 (𝑖, 𝑗), 𝑴 (𝑖, .·)
and 𝑴 (·, 𝑗) to present a matrix element, the 𝑖th row and
the 𝑗 th column of 𝑴 respectively. Table II.1 lists our
commonly used notations. Unless particularly specified, all
notations are following this table. Table II.1 also shows the
abbreviations of methods mentioned in the next sections.

2. Graph

An undirected graph 𝐺 = (𝑉, 𝐸) of 𝑁𝑣 vertices/n-
odes and 𝑁𝑒 edges/links consists of two sets: a set of
vertices 𝑉 = {𝑖 |1 ≤ 𝑖 ≤ 𝑁𝑣} and a set of edges 𝐸 ={
𝑒𝑖, 𝑗 = (𝑖, 𝑗) |1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑣

}
[11]. Each vertex is associated

with a 𝑁𝑑-dimensional feature vector 𝒙𝑖 ∈ R1×𝑁𝑑 and
all vertices form a feature matrix 𝑿 =

[
𝒙1, 𝒙2, .., 𝒙𝑁𝑣

]T.
Basically, a graph 𝐺 can be described by two components: a

24

Vol. 2022, No. 1, March

Table I
NOTATIONS AND ABBREVIATIONS

Notations Descriptions Abbreviations Descriptions
𝐺 Graph 1-WL 1-dimensional Weisfeiler-Lehman
𝑉 The set of nodes CNN Convolutional Neural Network
𝐸 The set of edges LSTM Long-Sort Term Memory
𝑨 Adjacency matrix MLP Multi-layer Perceptron
𝑫 Degree matrix GAE Graph Auto-encoder
𝑳 Laplacian matrix GAT Graph Attention Network
�̃� Normalized Laplacian matrix GCN Graph Convolutional Network
𝑯 Hidden layer GNN Graph Neural Network
𝑁𝑣 The number of nodes GraphSAGE Graph SAmple and aggreGatE
𝑁𝑒 The number of edges NMF Non-negative Matrix Factorization
𝑁𝑙 The number of network layers RNN Recurrent Neural Network
𝑿 Feature matrix
A Structural matrix
N (·) Neighborhood of a node
𝒔 Graph signal vector
𝑷 Permutation matrix
R≥0 Non-negative real numbers
∥ · ∥𝐹 Frobenius norm
≃ Isomorphism

feature matrix 𝑿 and a graph structure matrix A. Between
them, graph structure is most important but difficult to
obtain an effective representation form. In the following, we
summarize some typical structural matrices for undirected
graphs in literature.

• Adjacency matrix: An adjacency matrix 𝑨 ∈ R𝑁𝑣×𝑁𝑣

of an undirected graph is a symmetric matrix whose
element at the 𝑖th row and 𝑗 th column, denoted 𝑨 (𝑖, 𝑗),
is equal to 1 if there exists an edge between two
vertices 𝑖 and 𝑗 , otherwise 𝑨 (𝑖, 𝑗) = 0.

𝑨 (𝑖, 𝑗) =
{

1 if (𝑖, 𝑗) ∈𝐸
0 otherwise

• Degree matrix: A degree matrix 𝑫 =

diag
(
𝑑1, 𝑑2, .., 𝑑𝑁𝑣

)
∈ R

𝑁𝑣×𝑁𝑣 is a diagonal
matrix whose the 𝑖th element on the diagonal
𝑑𝑖 = |{ 𝑗 | (𝑖, 𝑗) ∈ 𝐸}| is the degree at the vertex 𝑖 or
the number of edges containing that vertex.

𝑫 (𝑖, 𝑗) =
{
𝑑𝑖 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

• Laplacian matrix: This matrix is defined as 𝑳 = 𝑫 −
𝑨. It is symmetric and diagonal and its elements are
from degree matrix whilst off-diagonal elements are
−1 if connected.

𝑳 (𝑖, 𝑗) =

−1 if (𝑖, 𝑗) ∈ 𝐸
𝑑𝑖 if 𝑖 = 𝑗

0 otherwise

• Normalized Laplacian matrix: The matrix 𝑳 can be
normalized into [−1, 1] by dividing its elements by
corresponding geometric mean as:

�̃� (𝑖, 𝑗) =

−1/

√︁
𝑑𝑖𝑑 𝑗 if (𝑖, 𝑗) ∈ 𝐸 vÃ 𝑖 ≠ 𝑗

1 if 𝑖 = 𝑗

0 otherwise

or rewrite it in a matrix multiplication form:

�̃� = 𝑫−1/2𝑳𝑫−1/2

= 𝑫−1/2 (𝑫 − 𝑨) 𝑫−1/2 = I − 𝑫−1/2𝑨𝑫−1/2

• Positive point-wise mutual information (PPMI)
PPMI is a probabilistic co-occurrence matrix, AP ∈
R𝑁𝑣×𝑁𝑣 originated from information theory. In graph
learning, PPMI is applied to encode the semantic infor-
mation of entire graphs [16–18] and it is estimated via
two steps: 1) compute the frequency of co-occurrence
of nodes over graphs and store these values in a
frequency matrix 𝑭, e.g., an entry 𝑭 (𝑖, 𝑗) counts the
number of random walks between two nodes 𝑖 and 𝑗

within a predefined window [16]; and then 2) estimate
the probability AP (𝑖, 𝑗) that the node 𝑖 occurs within
a window around the node 𝑗 :

AP (𝑖, 𝑗) = max
©«log

©«
𝑭 (𝑖, 𝑗)

(∑𝑖 𝑭 (𝑖, 𝑗))
(∑

𝑗 𝑭 (𝑖, 𝑗)
) ª®®¬ , 0

ª®®¬
In addition to describe the graph structural informa-
tion (vertices and their connections), the aforemen-
tioned matrices (except for PPMI matrix) can be

25

Research and Development on Information and Communication Technology

used as graph operators. For example, multiplying
an adjacency matrix 𝑨 by a graph signal vector
𝒔 =

[
𝑠1, 𝑠2, .., 𝑠𝑁𝑣

]
∈ R1×𝑁𝑣 , where 𝑠𝑖 is an observed

signal/feature at the 𝑖th vertex, results in a new signal
𝑨𝒔 ∈ R1×𝑁𝑣 whose entry is the sum of all signals of
vertices 𝑗 connecting to 𝑖. Meanwhile, 𝑫𝒔 ∈ R1×𝑁𝑣 is
multiplying 𝑠𝑖 by the corresponding degree value 𝑑𝑖 at
𝑖 and 𝑳𝒔 ∈ R1×𝑁𝑣 (or normalized version �̃�𝒔 ∈ R1×𝑁𝑣)
expresses the sum of difference between signal at 𝑖 and
its neighbor’s signals.

3. Graph signal processing

From the perspective of graph signal processing, 𝑨,
𝑫,𝑳 and �̃� are considered as graph representations in
spatial domain. Another way of graph analysis is to convert
them into frequency domain via graph Fourier transforms.
The transformed graph signals show some interesting and
meaningful information, e.g., connection strength between
connected components, which is not obviously exposed in
spatial domain, and therefore, graph signal processing is a
powerful tool to learn the representation of graphs. This
part provides the basic concepts in graph signal processing
as an underlying theory for the approach of spectral graph
learning methods.

Spectral graph analysis: Given a graph 𝐺 and its
normalized Laplacian matrix �̃�, spectral graph analysis
[19] finds the spectral characteristics of 𝐺 by eigen-
decomposing �̃� into eigen-values, described by a diagonal
matrix 𝚲, and a matrix 𝑼 of eigen-vectors. These matrices
own some important properties and therefore are considered
as indicators of graph topology, for example, the number
of zero eigen-values is equal to the number of connected
components of 𝐺.

Graph Fourier transform: Fourier transform implies to
analyze an input signal/voice/image/graph as a combination
of basic components, e.g., wavelet, graphlet. Similarly,
Fourier transform on graph converts a signal vector 𝒔

into spectral domain encoded by eigen-vectors 𝑼 of �̃�.
Particularly, if �̃� = 𝑼𝚲𝑼T then Fourier transform of 𝒔

is �̃� = F (𝒔) = 𝑼T𝒔, where �̃� is the spectral represen-
tation of the input signal 𝒔. The inverse graph Fourier
transform projecting �̃� back to the input space is given as:
˜̃𝒔 = F −1 (�̃�) = 𝑼�̃� = 𝒔.

Graph convolution: A convolution between a signal
vector 𝒔 and a filter 𝒈 ∈ R𝑁𝑣 is defined as:

𝒔∗𝒈 = F −1 (F (𝒔) ⊙ F (𝒈))
= 𝑼

(
𝑼T𝒔 ⊙ 𝑼T𝒈

)
= 𝑼

(
𝑼T𝒈 ⊙ 𝑼T𝒔

)
where ∗ is convolution operator and ⊙ is Hadamard prod-
uct. Let 𝒈\ be diag

(
𝑼T𝒈

)
, resulting in 𝑼T𝒈 ⊙ 𝑼T𝒔 =

Figure 2. An example of two isomorphic graphs. The corresponding
vertices share the same color (adopted from [21]).

diag
(
𝑼T𝒈

)
⊙ 𝑼T𝒔 and the convolution can be simplified

as 𝒔∗𝒈\ = 𝑼𝒈\𝑼
T𝒔. Basically, spectral graph learning

methods can be distinguished based on different filters 𝒈\ .

4. Graph isomorphism

Two graphs 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸 ′) are isomorphic
𝐺≃𝐺′ if and only if there exists a bijection preserving the
adjacency relationship of vertices. Formally, a mapping 𝑓 :
𝑉 → 𝑉 ′ satisfies ∀ (𝑢, 𝑣) ∈ 𝐸 if and only if (𝑓 (𝑢) , 𝑓 (𝑣)) ∈
𝐸 ′. The mapping 𝑓 is called isomorphism. If 𝐺 and 𝐺′are
identical then 𝑓 : 𝑉 → 𝑉 are a bijection from 𝑉 to 𝑉 and
𝑓 is an automorphism. Fig. 2 illustrates two isomorphic
graphs. Verifying whether two graphs are isomorphic is still
an open problem in computer science. The recent results
show that this is NP but has not been known to be NP-
complete or be solved in polynomial time [20].

One of the most widely-used and effective algorithm to
test isomorphism in polynomial time is Weisfeiler-Lehman
test. Its most well-known is the 1-dimensional version
(1-WL) [22]. Suppose that 𝐺 and 𝐺′ are two graphs
with the size of 𝑁𝑣 , 1-WL algorithm employs an iterative
procedure (up to 𝑁𝑣 iterations). For each iteration, 1-WL
goes through all vertices of two graphs and reassigns their
labels/refines their colors based on their current labels/col-
ors and ones of their neighbors.

Let 𝑐𝑖, 𝑗 be the color of the 𝑗 th vertex of 𝐺 at the 𝑖th iter-
ation and N𝐺 (𝑗) is the neighborhood of the node 𝑗 of 𝐺.
Colors of vertices can be sortable integers. Two nodes with
the same/different color value indicate the same/different
local structures. We use a multi-set 𝑆𝑖, 𝑗 to describe colors
of that node and its neighbors at the 𝑖th iteration. A multi-
set is an extension of set but accepts replicated elements.
1-WL algorithm is summarized in Alg. 1.

1) Set color value to be 1 for all vertices of 𝐺 and 𝐺′

(lines 1-3).
2) For each iteration, enumerate all vertices of two

graphs and update their colors (line 5).

26

Vol. 2022, No. 1, March

Algorithm 1: 1-WL
1 Inputs: 𝐺 = {𝑉, 𝐸} , 𝐺′ = {𝑉 ′, 𝐸 ′} , |𝑉 | = |𝑉 ′ | , 𝑁WL
2 Outputs: True/False
3 begin
4 for 𝑚 ← 1, . . . , 𝑁𝑣 do
5 𝑐0,𝑖 ← 1;
6 𝑐′0,𝑖 ← 1;
7 end
8 for 𝑖 ← 1, . . . , 𝑁WL do
9 for 𝑗 ← 1, . . . , 𝑁𝑣 do

10 𝑆𝑖, 𝑗 ← sort
({
𝑐𝑖−1,𝑢 |𝑢 ∈ N𝐺 (𝑗)

})
;

11 𝑆′
𝑖, 𝑗
← sort

({
𝑐′
𝑖−1,𝑢 |𝑢 ∈ N𝐺′ (𝑗)

})
;

12 𝑐𝑖, 𝑗 ← hash
(
𝑐𝑖−1, 𝑗 , 𝑆𝑖, 𝑗

)
;

13 𝑐′
𝑖, 𝑗
← hash

(
𝑐′
𝑖−1, 𝑗 , 𝑆

′
𝑖, 𝑗

)
;

14 end
15 end
16 if partitions of 𝐺 and 𝐺′ are the same over iterations

then
17 return True;
18 else
19 return False;
20 end
21 end

a) At each node 𝑗 , gather all node’s colors in its
neighborhood, form a multi-set 𝑆𝑖, 𝑗 and sort
them in ascending order (lines 6-7).

b) Concatenate the color of the node 𝑗 and 𝑆𝑖, 𝑗

to produce a tuple
(
𝑗 , 𝑆𝑖, 𝑗

)
and label this tuple

with a new color 𝑐𝑖, 𝑗 so that two nodes with
the same tuple have the same color value (lines
8-9).

3) At the 𝑖th iteration, if the algorithm divides two graphs
𝐺 and 𝐺′ into different partitions then two graphs
are non-isomorphic and we can stop the algorithm.
Otherwise, if all 𝑁𝑣 iterations are passed and the
partitions of two graphs are consistent over iterations,
two graphs have high probability to be isomorphic
(lines 10-13).

Basically, 1-WL produces two different colors for two
graphs, they are certainly non-isomorphic. In the case of
the same coloring results, we are unable to conclude there
is an isomorphism between two graphs because there still
exists some non-isomorphic graphs with the same 1-WL
test, e.g., Fig. 3. However, WL is still powerful enough to
distinguish almost all pairs of non-isomorphic graphs [23].
Fig. 4 demonstrates typical steps of 1-WL. The algorithm
ends at the 3rd iterations because of no changes in colors of
two graphs. The complexity of 1-WL is O (𝑁WL𝑁𝑣), which
is proportional to graph size and the number of iterations.

1-WL is a crucial algorithm in graph learning. It not
only deals with the problem of testing the isomorphism of
two graphs but also has been a fundamental framework to
develop most models invariant to isomorphism recently.

Figure 3. Non-isomorphic graphs with the same 1-WL test result (adopted
from [21]).

III. GRAPH STRUCTURE LEARNING

Learning graph topology is a core topic in graph learning,
whose goal is to encode entire graph structures or nodes’
𝑘-hop connections into a compact vector, which can be
processed efficiently and effectively by machine learning
algorithms in downstream tasks. Studies on graph structure
learning are fairly diverse and their distinction lies in which
part of structural information is captured and how to extract
it. Overall, graph structure learning can be divided into six
approaches of graph coloring, matrix factorization, node
embedding, structure encoding as aggregation operator,
spectral domain-based methods and motif-based methods.

1. Graph coloring based methods

Graph coloring or graph labeling is a function from a
vertex set 𝑉 to an ordered set (e.g., integers, real numbers,
strings) and assigns a value, named color, of this target
set to each node. Two nodes with similar local structures
(based on predefined criteria) share the same color and
vice versa, nodes with different neighborhood topologies
are labeled with different colors. As a result, a color value
becomes a compact embedding code describing a node’s
local structure.

PATCHY-SAN [24] introduces a method to extract local
regions. First, based on the result of graph coloring (e.g.,
Weisfeiler-Lehman test [22]), the method produces a sorted
list of nodes using their colors and then traverses through
this list with a given stride to obtain a node sequence. Next,
a breadth-first search procedure is performed to gather the
neighbors of each node 𝑣 with the increasing distance from
𝑣 until reaching the expected number of 𝐾 neighboring
nodes. The graph is normalized using an extension of
coloring algorithms for similar graphs, which is learned to
find an optimal labeling from a collection of graphs.

[25] extracts tensorial representations of graphs using
a coloring procedure twice across two dimensions. The
first coloring process is performed to select a sequence
of 𝑁sel nodes, similar to [24]. Then, for each node, 𝐾
closest neighbors are gathered and sorted based on the
colors provided by another coloring procedure. Finally, we
obtain a final tensor of shape 𝑁sel × 𝐾 × 𝑁𝑑 , where 𝑁𝑑 is
the length of categorical one-hot vectors of nodes.

27

Research and Development on Information and Communication Technology

Figure 4. 1-WL procedure (adopted from [21]).

Graph coloring-based methods allow to represent com-
plex topology of graphs into simple color codes, which
are convenient for both processing and storage but still
distinguishable. Moreover, the codes are designed to be
orderable, rendering no requirement to explicitly store in
representations, e.g., codes can be implied as tensor indices
in [24, 25]. Since this structure encoding approach is
completely based on graph coloring algorithms, its repre-
sentation power mainly depends on the accuracy and speed
of the chosen algorithms.

2. Structural matrix factorization

The topology of graphs is initially described in structural
matrices such as adjacency matrix or Laplacian matrix.
However, such matrices usually only provide basic in-
formation, i.e., two vertices are connected or not. For
specific applications, matrix factorization can be employed
to discover hidden factors by factorizing these matrices
into the product of compact matrices. Resulting elementary
matrices are problem-driven and help more to improve
the performance of systems than the original structural
matrices.

GNMTF (Graph regularized non-negative matrix tri-
factorization) [26] uses non-negative matrix factoriza-
tion to extract the intrinsic geometric information of

networks for overlapping community detection. Partic-
ularly, given the adjacency matrix 𝑨 of a graph,
GNMTF aims to tri-factorize 𝑨 ≈ 𝑴𝚲𝑴T, where
𝑴 (𝑖, 𝑗) indicates the strength of the 𝑖th node be-
longing to the 𝑗 th community, while the matrix 𝚲
represents the relationship among communities. To
find 𝑴 and 𝚲, GNMTF minimizes the square loss
function:

𝑨 − 𝑴𝚲𝑴T
2
𝐹

or generalized KL-divergence∑ [
𝑨 (𝑖, 𝑗) log 𝑨(𝑖, 𝑗)

(𝑴𝚲𝑴T) (𝑖, 𝑗) − 𝑨 (𝑖, 𝑗) +
(
𝑴𝚲𝑴T

)
(𝑖, 𝑗)

]
.

ESNMF (Ego-Splitting networks using symmetric Non-
negative Matrix Factorization) [27] follows the similar
idea of optimization-based factorization for overlapping
community detection. Instead of factorizing the adjacency
matrix of the large-scale graph, ESNMF partitions it into
connected subgraphs via an ego-splitting process and incor-
porates prior information to obtain a subgraph matrix �̂�sub.
The factorization is done on this matrix:

�̂�sub − 𝑴𝑴T
2
𝐹

,
where 𝑴 (𝑖, 𝑗) indicates the 𝑖th node belongs to the 𝑗 th

community, 𝑴 (𝑖, 𝑗) = 1, or not 𝑴 (𝑖, 𝑗) = 0.

Gaia Ceddia et al. [28] extend Non-negative Matrix Tri-
Factorization to predict the interactions between drugs and
proteins. An input network contains multiple types of drugs
and proteins, which can be encoded as an association matrix
𝑅 ∈ R |𝑉1 |× |𝑉2 |

≥0 between two sets of nodes 𝑉1 and 𝑉2,
whose element 𝑅 (𝑣1, 𝑣2) > 0 if 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2 are

28

Vol. 2022, No. 1, March

connected; and 𝑅 (𝑣1, 𝑣2) = 0 otherwise. In [28], after intro-
ducing an enhanced association matrix 𝑅′ ∈ [0, 1] |𝑉1 |× |𝑉2 | ,
where 𝑅′ (𝑣1, 𝑣2) is related to the shortest path between
𝑣1 and 𝑣2, the authors propose to convert 𝑅′ into three
non-negative factors by minimizing the following Frobenius
norm:

𝑅′ − 𝑀1𝑄𝑀
T
2
2
𝐹

using an iterative update proce-
dure. The approximate matrix 𝑅′ = 𝑀1𝑄𝑀

T
2 is used to infer

novel associations (i.e., drug-protein-disease interactions)
between elements in 𝑉1 and 𝑉2.

Non-negative Matrix Factorization is also adopted to
learn clusterable representations of nodes in a semi-
supervised manner. In the proposed Unified Semi-
Supervised NMF framework (USS-NMF) [29], node rep-
resentations 𝑴 are learned by jointly factorizing Point-
wise Mutual Information matrix, label matrix, inferred
cluster assignment matrix. The factorization allows con-
nected nodes to have similar representations, rendering the
capacity of local invariance node encoding. These learned
representations can be used as input for any traditional
classifiers such as Logistic Regression.

The above NMF-based community detection is shallow
methods, which directly map from input space to com-
munity membership space. Deep Autoencoder-like Non-
negative Matrix Factorization (DANMF) [30] develops a
hierarchical mapping to capture the complex and diverse
structures of real-world graphs. Formally, the adjacency
matrix is approximated by 𝑨 ≈ 𝑴1𝑴2...𝑴𝑁𝑙𝑸, wherein,
𝑴𝑙 and 𝑸 are non-negative matrices. Each column of
𝑸 reveals the possibility that a node is a member of a
community whilst the series of 𝑴𝑙 is mapping functions
between the input space and the community membership
space. To model this hierarchical factorization, DANMF
trains a Deep Autoencoder with parameter matrices 𝑴𝒍

and 𝑸 to minimize the difference between the original
structural matrix 𝑨 and its approximation. DANMF inherits
both the intrinsic representation learning of deep models
and the power of NMF for community detection and hence
it outperforms many shallow NMF-based methods.

Node feature representations can be extracted with
low rank matrix factorization. Text-Associated Deep-
Walk (TADW) proposes a way to incorporate text in-
formation, encoded in matrix 𝑿 text, into a factorization
framework. Let 𝑻 be a transition matrix in PageRank,
TADW attempts to approximate

(
𝑻 + 𝑻2) /2 ≈ 𝑴T

1𝑸𝑿 text

, wherein 𝑴1 and 𝑸 are low-rank matrices. Similar
to [26, 27, 29], the approximation is casted to mini-
mization problem min𝑴1 ,𝑸

(𝑻 + 𝑻2) /2 − 𝑴T
1𝑸𝑿 text

2
𝐹
+

𝛼

(
∥𝑴1∥2𝐹 + ∥𝑸∥2𝐹

)
, which can be solved by alternatively

updating 𝑴1 and 𝑸. Finally, 𝑴1 and 𝑸𝑿 text are treated as
the low-dimensional representations of nodes.

Designed for scalability, NetSMF (large-scale network

embedding as sparse matrix factorization) [31] extracts the
sparse version �̂� of Laplacian matrix 𝑳 and constructs a
NetMF matrix sparsifier with the controllable number of
non-zero elements. By applying randomized SVD, which is
working efficiently on sparse matrices, the authors obtain
three matrix factors 𝑼,Λ and 𝑽 from the matrix sparsifier,
and use the 𝑼𝚲−1/2 as network embeddings.

In the scenario of defending adversarial attacks, adja-
cency matrices are perturbed and GNNs can easily be
fooled to make wrong predictions. Pro-GNN [32] at-
tempts to learn a clean adjacency matrix 𝑺 from the
given perturbed matrix 𝑨. The idea is to find a low-
rank and sparse matrix close to 𝑨 by minimizing the loss
min𝑆 ∥𝑨 − 𝑺∥2𝐹+𝛼 ∥𝑺∥1+𝛽 ∥𝑺∥∗, where ∥·∥1and ∥·∥∗ are 𝐿1
and nuclear norm respectively to force 𝑺 to be a sparse and
low rank matrix. Learning 𝑺 is done simultaneously with
training GNN parameters to improve node classification
task. Similarly, LDS (Learning Discrete Structures) [33]
is based on an optimization framework to iteratively learn
the parameters 𝜽 of a graph generative model, which can
draw edges from Bernoulli random variables 𝑨 = Ber (𝜽),
and find the optimal parameters of a GCN given generated
graphs.

For graph structure learning, matrix factorization ap-
proach enables to disentangle hidden factors, which are
usually not clearly observed in original structural matri-
ces, and therefore training machine learning methods on
extracted meaningful factors yields more benefits. The
main drawback of factorization-based structure learning is
that it requires much expert knowledge to choose proper
factorization methods for target applications, limiting the
applicability of this approach. In addition, matrix factoriza-
tion is also an expensive operation and infeasible to work
on large graphs such as social networks or collaboration
networks.

3. Node embedding

Node embedding is a group of techniques to encode
nodes into low-dimensional vectors, preserving local neigh-
borhood of nodes. More specifically, the geometric dis-
tance of two embeddings in a latent space reflects their
relationship in original networks. According to [34], node
embedding methods share the same 2-stage framework of
encoding and decoding. An encoder is a function 𝑓 enc

mapping from a node 𝑣 ∈ 𝑉 to an embedding vector 𝒛 ∈ R𝑑
in a 𝑑-dimensional latent space: 𝒛 = 𝑓 enc (𝑣). Meanwhile,
a decoder 𝑓 dec is a mapping from the latent space to the
input space, which predicts the relationship of a pair of
nodes: 𝑟 = 𝑓 dec (𝒛𝑣 , 𝒛𝑢) . Given a structural matrix A,
node embedding methods attempt to optimize the following
loss: L =

∑
𝑢,𝑣∈𝑉 𝑓 dis (

𝑓 dec (𝒛𝑢, 𝒛𝑣) ,A (𝑢, 𝑣)
)
. Existing

29

Research and Development on Information and Communication Technology

embedding methods can be distinguished via their choice of
the encoder 𝑓 enc, the decoder 𝑓 dec and the distance function
𝑓 dis.

High-Order Proximity preserved Embedding (HOPE)
[35] defines the decoding function as inner product
𝑓 dec (𝒛𝑢, 𝒛𝑣) = 𝒛T

𝑢 𝒛𝑣 to capture high-order proximity
and the distance function as Euclidean distance L =∑
𝑢,𝑣∈𝑉

𝒛T
𝑢 𝒛𝑣 −A (𝑢, 𝑣)

, where A is a proximity matrix,
to ensure that the embeddings of nodes correlate with their
observed connections.

Unlike HOPE which tries to reconstruct the structural
matrix directly, probabilistic methods such as node2vec are
based on random walks to investigate graph topology and
attempt to reconstruct the probabilities of random walks.
In node2vec [36], the inner product of two latent repre-
sentations is connected to the conditional probability of
two corresponding nodes via random walks 𝑝 (𝑣 | 𝑓 enc (𝑢)) =
exp(𝒛T

𝑢𝒛𝑣)∑
𝑖, 𝑗 𝒛

T
𝑖
𝒛 𝑗

. The entire node2vec framework reconstructs the
maximum probability of linked nodes from their embed-
dings as follows:

L =
∑︁
𝑢∈𝑉

log

∏
𝑣∈N(𝑢)

𝑝 (𝑣 | 𝑓 enc (𝑢))

=
∑︁
𝑢∈𝑉

− logZ𝑢 +
∑︁

𝑣∈N(𝑢)
𝒛T
𝑢 𝒛𝑣

 , (1)

wherein Z𝑢 =
∑
𝑣∈𝑉 exp

(
𝒛T
𝑢 𝒛𝑣

)
. Similarly, DeepWalk [37]

also follows the same strategy of using truncated random
walks to extract the structural information and learn the
topology via maximizing the probability of neighborhood.

LINE (Large-scale Information Network Embedding)
[38] proposes the idea of learning both the local and
global structures. Each structure type is learned via two
independent models to produce different embedding vectors
𝒛local,𝑢 and 𝒛global,𝑢. Two embeddings are concatenated to
create a final representation vector for each vertex 𝑢. The
local structure is captured by the first-order proximity
between nodes. In other words, it is the direct connection
between nodes. The decoder as a sigmoid function of inner
product of two embedding vectors is defined as the joint
probability of two nodes.

𝑓 dec
local (𝑣, 𝑢) = 𝑝1 (𝑣, 𝑢) =

1

1 + exp
(
−𝒛T

local , 𝑣 𝒛local , 𝑢

)
Meanwhile, the global structure or the second-order prox-
imity is determined as the common neighborhoods of two
nodes. The decoder represents the conditional probability
of a context 𝑢 given a node 𝑣:

𝑓 dec
global (𝑣, 𝑢) = 𝑝2 (𝑢 |𝑣) =

exp
(
𝒛T

global,𝑣 𝒛global,𝑢

)
∑
𝑣1∈𝑉 𝒛T

global,𝑣 𝒛global,𝑣1

Basically, LINE maps both the local and global struc-
tures into continuous embedding vectors that represent
the probabilities over vertices. The object functions are
trained to minimize the KL-divergence between the joint
and conditional probabilities described by two decoders and
the corresponding empirical probabilities.

For heterogeneous graphs, Heterogeneous Graph Struc-
ture Learning (HGSL) [39] first defines a weighted cosine
similarity function:

𝑓 dec
r (𝒙𝑣 , 𝒙𝑢) =

1
𝐾

𝐾∑︁
𝑖=1

cos
(
𝒘𝑘,𝑟⊙𝒙𝑣 , 𝒘𝑘,𝑟⊙𝒙𝑢

)
where 𝒘𝑘,𝑟 are learnable parameters, and then HGSL
applies it to generate the feature similarity graph 𝑨SF

𝑟 ,
which predicts the connection probability of two nodes
based on their feature vectors. By propagating feature
similarity graph along topological structure 𝑨𝑟 of graph,
HGSL obtains the feature propagation graphs for head
nodes 𝑨SFH

𝑟 = 𝑨SF
𝑟 𝑨𝑟 and tail nodes 𝑨SFT

𝑟 = 𝑨𝑟 𝑨
SF
𝑟 , which

represent nodes with similar features and neighbours. These
matrices are combined to obtain the feature graph 𝑨Feat

𝑟 .
The cosine similarity function above is also used on em-
bedding vectors of metapaths to construct a semantic graph
𝑨Sem
𝑟 . Finally, learned structure graph is a combination of

the feature graph 𝑨Feat
𝑟 , the semantic graph 𝑨Sem

𝑟 and the
original graph 𝑨𝑟 via an attention layer. The parameters
of the graph structure learning network are jointly trained
with 2-layer GCN to predict node labels.

Node embedding-based methods essentially convert dis-
crete graph data into a richer continuous embedding space
but still preserve the structural information of nodes. How-
ever, these methods suffer the following disadvantages
[34]: 1) no parameters sharing between encoders cause
computational inefficiency because the number of param-
eters grows linearly with respect to the graph size and
2) with transductive nature, these methods are unable to
extract the embedding vectors of new unseen nodes without
retraining embeddings. These main problems hinder the
further development of this direction in recent years.

4. Structure encoding as aggregation operators

Structural matrices A can be viewed as 1) data ob-
jects that store the structural information of graphs (which
nodes connect to which nodes) and 2) operators that are
used to aggregate the information within neighborhood.
Aggregation-based structure learning grounds on the latter

30

Vol. 2022, No. 1, March

characteristic of structural matrices. Since most convo-
lutional graph neural networks (ConvGNN), which are
gaining attention from research communities recently, are
following this direction to learn graph structures, we focus
on ConvGNNs in this part.

Inheriting the principles of deep learning, ConvGNNs
consist of many layers of neurons, which connect to those
on the next layer. Eq. 2 shows fundamental transformation
in a layer, which contains a matrix multiplication between
input 𝑯 (𝑙−1) and learnable parameters Θ(𝑙−1) of the layer
𝑙 − 1, the neighbor aggregation via a matrix multiplication
with structural matrix A and finally a non-linear mapping
𝑓 act:

𝑯 (𝑙) = 𝑓 act
(
A𝑯 (𝑙−1)𝚯(𝑙−1)

)
(2)

wherein, 𝑯 (0) = 𝑿 and 𝑓 act can be any non-linear function
such as sigmoid or ReLU. Generally speaking, the input
signal of each layer is transformed via a linear mapping
controlled by Θ(𝑙−1) before these transformed vectors are
aggregated along edges. To deeply uncover the role of A,
let’s rewrite Eq. 2 into the form of neuron-wise transfor-
mation:

𝒉 (𝑙)𝑣 = 𝑓 act ©«
∑︁

𝑢∈N(𝑣)
𝒉 (𝑙−1)
𝑢 𝚯(𝑙−1)ª®¬

It can be seen that the structural matrix is only used
to provide the connection information to aggregate nodes
within a neighborhood, rendering an underuse of graph
structures.

The early work on ConvGNNs is NN4G (Neural Net-
works for Graphs) [40] which directly employs adjacency
matrix A = 𝑨 to gather the hidden representations of
neighbors. Unlike Eq. 2, NN4G takes the feature matrix
𝑿 of graph as well as the hidden representations of all
preceding layers 𝑯 (𝑖) into account.

𝑯 (𝑙) = 𝑓 act

(
𝑿𝑾 (𝑙−1) +

𝑙−1∑︁
𝑖=1

𝑨𝑯 (𝑖)𝚯(𝑖,𝑙−1)

)
where, 𝑾 (𝑙−1) and Θ(𝑖,𝑙−1) are parameters corresponding
to feature and hidden representations respectively.

Graph Convolutional Networks (GCN) [41] is one of
seminal works on applying deep learning to graphs. In
GCN, the structural matrix is chosen as a deterministic
function of adjacency matrix A = 𝑫−

1
2 (𝑨 + I) 𝑫− 1

2 ,
wherein 𝑨 + I implies self-connections added and 𝑫−

1
2

works as a normalizing factor.

𝑯 (𝑙) = 𝑓 act
(
𝑫−

1
2 (𝑨 + I) 𝑫− 1

2 𝑯 (𝑙−1)𝚯(𝑙−1)
)

(3)

Deep Graph Convolutional Neural Network (DGCNN)
[42] is also based on adjacency matrices to incorporate
structural information but performs a different way to

compute the structural matrix. For particular, by setting
�̃� = 𝑨 + I and �̃� (𝑖, 𝑖) = ∑

𝑗 �̃� (𝑖, 𝑗), we obtain a hidden
layer update equation, similar to GCN’s, but different in
normalization factor:

𝑯 (𝑙+1) = 𝑓 act
(
�̃�
−1 (𝑨 + I) 𝑯 (𝑙−1)𝚯(𝑙−1)

)
Bo Jiang et al. extend GCN to semi-supervised graph learn-
ing, where the structural matrix is not provided explicitly.
The core idea of Graph Learning-Convolution Network
(GLCN) [43] is to construct the structural matrix A by
leveraging node embedding techniques (Subsec. III.3). The
first layer of GLCN, parameterized by a vector 𝒘 that learns
the similarity of two nodes 𝑣 and 𝑢 using the following
equation:

A (𝑣, 𝑢) =
𝑨 (𝑣, 𝑢) exp

(
ReLU

(
𝒘T |𝑥𝑣 − 𝑥𝑢 |

))
∑𝑛
𝑗=1 𝑨 (𝑣, 𝑗) exp

(
ReLU

(
𝒘T

��𝑥𝑣 − 𝑥 𝑗 ��)) (4)

In some cases, when 𝑨 is not available, we drop the
𝑨 (·, ·) to yield the corresponding equation without 𝑨. The
next layers are typical convolutional layers, similar to GCN,
but work on computed structural matrix A and its corre-
sponding degree matrix 𝑫A = diag

(
𝑑1, 𝑑2, ..., 𝑑𝑁𝑣

)
,where

𝑑𝑖 =
∑𝑁𝑣
𝑗=1 A (𝑖, 𝑗):

𝑯 (𝑙) = 𝑓 act
(
𝑫A

− 1
2 (A + I) 𝑫−

1
2

A
𝑯 (𝑙−1)𝚯(𝑙−1)

)
Finally, a perceptron layer is stacked on top to predict the
label of the input graph.

The aggregation above can be viewed as a message
passing process which propagates the message from a
neighbor 𝑢 to a node 𝑣. GAT (Graph Attention Networks)
[44] assumes that neighbors send messages with different
contributions to the central node 𝑣 and therefore GAT
introduces an attention-based mechanism to re-compute
the weights of messages. The hidden state of a neuron is
updated as follows:

𝒉 (𝑙)𝑣 = 𝜎
©«

∑︁
𝑢∈N(𝑣)∪{𝑣}

𝛼
(𝑙)
𝑣𝑢𝚯

(𝑙)𝒉 (𝑙−1)
𝑢

ª®¬
The attention weight 𝛼

(𝑙)
𝑣𝑢 shows the contribution of

a node 𝑢 to a node 𝑣 and is updated as 𝛼
(𝑙)
𝑣𝑢 =

softmax
(
LeakyReLU

(
𝒘T

[
𝚯(𝑙)𝒉 (𝑙−1)

𝑣 ,𝚯(𝑙)𝒉 (𝑙−1)
𝑢

]))
,

where 𝒘 and 𝚯 are learnable parameters.

Information aggregation using structural matrices is
widely implemented in a lot of state-of-the-art graph neural
network systems nowadays. But richer and higher-level
structural information encoded in A has not been discov-
ered yet except for some basic connections within 𝑘-hops
neighborhood. There is a question about how well graph

31

Research and Development on Information and Communication Technology

neural networks can preserve graph structures [45]. This is
confirmed in [46], whose experiments show that structure-
agnostic methods outperform graph neural networks on
structure-driven problems (i.e., chemical datasets). Hence,
more studies should be conducted to explore and extend
the capacity of aggregating graph structural information.

5. Spectral domain-based methods

Spectral graph learning consists of methods that are
based on graph Fourier transform and have a strong connec-
tion to the theory of graph signal processing [47–49]. Given
an undirected graph whose structure can be represented by a
structural matrix A (adjacent matrix or Laplacian matrix).
Since A owns special properties such as real symmetric
positive semi-definite, it can be eigen-decomposed into
A = 𝑼𝚲𝑼T, wherein 𝑼 =

[
𝒖1, 𝒖2, ..., 𝒖𝑁𝑣

]
∈ R𝑁𝑣×𝑁𝑣 is

orthonormal eigen-vectors (𝑼T𝑼 = I) and 𝚲 (𝑖, 𝑖) = _𝑖 are
eigen-values. A graph signal is defined as a vector 𝒔 ∈ R𝑁𝑣 ,
whose 𝑖th element is an observed signal at the 𝑖th vertex.
Graph Fourier transform applied to 𝒔 is demonstrated as
�̃� = F (𝒔) = 𝑼T𝒔 and its inverse transform is F −1 (�̃�) = 𝑼�̃�.
Basically, graph Fourier transform maps an observed signal
in an input space to �̃� in a spectral space, which is a space
of columns of 𝑼. In other words, the 𝑖th element of �̃� is a
new coordinate of 𝒔 in the spectral space or 𝒔 =

∑
𝑖 𝒔𝑖𝒖𝑖 . A

convolution between a graph signal 𝒔 and a filter 𝒈 ∈ R𝑁𝑣
is defined as:

𝒔∗𝒈 = F −1 (F (𝒔) ⊙F (𝒈)) = 𝑼
(
𝑼T𝒔⊙𝑼T𝒈

)
where ⊙ is Hadamard product and ∗ is convolution operator.
If 𝒈\ = diag

(
𝑼T𝒈

)
then we can simplify 𝒔∗𝒈\ = 𝑼𝒈\𝑼

T𝒔.

As a branch of ConvGNNs, spectral methods are strongly
related to spatial-based ones or aggregation-based structure
learning mentioned in Subsec. III.4. The basic idea is to
convert the structural matrix A into a spectral domain,
apply a filter and project back to the spatial domain.
Let us revisit Eq. 2 and view the resulting multiplication
𝑯 (𝑙−1)𝚯(𝑙−1) as multi-dimensional graph signals on a graph
described by A. If we employ a filter 𝒈\ in a spectral space,
whose basis is 𝑼, the layer-wise transformation of spectral
methods can be derived as:

𝑯 (𝑙) = 𝑓 act
(
𝑼𝒈\𝑼

T𝑯 (𝑙−1)𝚯(𝑙−1)
)

(5)

Spectral CNN [50] is one of the first studies on this
direction. The transformation is done by choosing a struc-
tural matrix as Laplacian matrix and decomposing it. The
transformation equation of Spectral CNN is as follows:

𝑯 (𝑙)·, 𝑗 = 𝑓 act ©«
𝑁𝑐
(𝑙−1)∑︁
𝑖=1

𝑼𝚽(𝑙)
𝑖 𝑗
𝑼T𝑯 (𝑙−1)

·,𝑖
ª®¬
(
𝑗 = 1, 2, ..., 𝑁𝑐 (𝑙)

)

where 𝑁𝑐 (𝑙) is the number of channels at the layer 𝑙. The
filter 𝒈\ = 𝚽(𝑙)

𝑖 𝑗
is a diagonal matrix, whose diagonal entries

can be updated during training. Eigen-decomposition is
expensive and causes O

(
𝑁3
𝑣

)
in computational complexity.

To tackle this problem, Chebyshev Spectral CNN [51] and
GCN [41] are introduced to reduce the complexity using
polynomial approximation.

ChebNet (Chebyshev Spectral CNN) [51] assumes that
the filter 𝒈\ can be approximated by Chebyshev polyno-
mial with respect to 𝜦 as 𝒈\ =

∑𝐾−1
𝑖=0 \𝑖𝑇𝑖

(
�̄�
)
, where

�̄� = 2𝜦/_max− I𝑁𝑣 ∈ [−1, 1]. The advantage of Chebyshev
polynomial is that each term can be recursively computed
from its preceding terms 𝑇𝑖 (𝒙) = 2𝒙𝑇𝑖−1 (𝒙) − 𝑇𝑖−2 (𝒙)
where we define 𝑇0 (𝒙) = 1 and 𝑇1 (𝒙) = 𝒙. As a result,
the convolution between a graph signal 𝒔 and a filter 𝒈\ is
obtained as:

𝒔 ∗ 𝒈\ = 𝑼

(
𝐾−1∑︁
𝑖=0

\𝑖𝑇𝑖
(
�̄�
))
𝑼T𝒔

Let us denote �̄� = 2𝑳/_max − I which can be considered as
a normalizing form of Laplacian matrix 𝑳 and we have �̄� =

2𝑼𝚲𝑼T/_max − I = 𝑼�̄�𝑼T and then 𝑇𝑖
(
�̄�
)
= 𝑼𝑇𝑖

(
�̄�
)
𝑼T.

The convolution 𝒔 ∗ 𝒈\ can be rewritten as:

𝒔 ∗ 𝒈\ =
𝐾−1∑︁
𝑖=0

\𝑖𝑇𝑖
(
�̄�
)
𝒔

The new form indicates that the convolution can be approx-
imated by recursively computing 𝑇𝑖

(
�̄�
)

in spatial domain
and therefore the graph Fourier transform is completely
removed and the computational cost is 𝑂 (𝐾𝑁𝑒). An-
other approximation approach is CayleyNet [52] which
replaces Chebyshev polynomial with Cayley polynomial.
It is proven that ChebNet is an instance of CayleyNet.

GCN (Graph Convolutional Networks) is a seminal work
proposed by Kipf et al. in [41]. As a bridge between spectral
and spatial approaches in ConvGNNs, GCN inherits the
strength of both. From the spectral view, GCN is the first
order approximation of ChebNet with 𝐾 = 1 and _max = 2
and the convolution equation in spatial domain is 𝒔 ∗ 𝒈\ =
\0𝒔 − \1𝑫

− 1
2

A
A𝑫

− 1
2

A
𝒔. To avoid over-fitting, GCN assumes

\ = \0 = −\1. Furthermore, it uses a normalized version
of adjacency matrix, i.e., A = 𝑨 + I𝑁𝑣 and 𝑫A (𝑖, 𝑖) =∑
𝑗 A (𝑖, 𝑗), to stabilize training and prevent gradients from

exploding or vanishing. Its convolution equation is given as:

𝒔 ∗ 𝒈\ = \
(
I𝑁𝑣 + 𝑫−

1
2 𝑨𝑫−

1
2

)
𝒔 = \𝑫

− 1
2

A
A𝑫

− 1
2

A
𝒔

DGCN (Dual Graph Convolutional Network) [16] employs
two networks with the same architectures of GCN. These
networks are different in input structural matrices. The
first network (named Conv𝑨) is based on the normalized
adjacency matrix in [41] to extract local structures around

32

Vol. 2022, No. 1, March

nodes. The second network takes PPMI (Positive Point-
wise Mutual Information) (described in Sec. II) as input
structural matrix. Two networks contain their own softmax
layers on top to individually predict output classes. DGCN
is trained with a loss function to minimize the inconsistency
between these two outputs and labels.

Among graph structure learning approaches, spectral
domain-based methods have a strong theoretical back-
ground of graph signal processing, rendering its notable ca-
pacity of explainability. Particularly, it has been proven that
eigen-values and eigen-vectors are associated with graph
connected components, showing that spectral domain-based
methods can learn the topology of graphs. The main draw-
back of these methods are high computational cost required
to convert signals from spatial to spectral domain but it
has not been a big problem due to excellent improvement
[41, 51, 52] in computation time recently.

6. Motif-based methods

Motifs are “patterns of interconnections that occur with
significantly higher frequencies in complex networks than
those in random networks” [53]. Generally speaking, net-
work motifs are popular subgraph structures frequently
occurring in real graphs. Methods in this approach are
mainly based on computing the frequency of motifs in input
networks. Elementary motif counting methods are not only
able to represent the structures of any graphs but also are
effective to measure the structural similarity between two
graphs even with different number of nodes and edges.
Therefore, they are able to process a lot of real-world
network types varying in size and topology.

Graphlets are one of popular motifs in graph learning
which were introduced in 2004 for protein-protein interac-
tion networks [54] and are developed in graph kernel by
Shervashidze et al. [55]. Since the number of graphlets ex-
ponentially increases with respect to the number of vertices,
the graphlet set is limited to small graphs whose size is ≤ 5
vertices. Let 𝒈 =

[
𝑔1, 𝑔2, ..., 𝑔𝑁graphlet

]T be a collection of
graphlets and 𝜙𝐺 (𝒈) be a frequency vector, whose element
is the frequency of occurrence of the corresponding graphlet
in 𝐺. This vector can be normalized by dividing it by the
sum of frequency of all graphlets in 𝐺 and we gain the
representation vector 𝜙𝐺 (𝒈) of 𝐺. It can be seen that the
structure of a graph is encoded as a normalized frequency
vector, two graphs 𝐺 and 𝐺′ with the similar representation
vectors have a high probability to share the same graph
structure. Therefore, graphlet-based methods measure the
graph similarity by defining the distance between these
vectors, e.g., inner product-based distance:

𝑘graphlet (𝐺,𝐺′) = 𝜙𝐺 (𝒈)T 𝜙𝐺 (𝒈′) (6)

This similarity measure can be used as kernel function in
kernel-based machine learning frameworks such as SVM
[56]. Other studies adopt the same idea of graph kernel in
Eq. 6 but propose to use low-cost substructures such as
subtree patterns or random walks.

Most works rely on Eq. 6 which assumes the indepen-
dence between substructures. This is not always true. Let
us consider an example on graphlets. A graphlet with size
𝐾 + 1 can be driven from a smaller graph with size 𝐾

by adding nodes or edges, showing a strong relationship
between graphlets. Deep Graph Kernel [57] incorporates
such relationships by introducing a positive semi-definite
matrix 𝑴:

𝑘
(
𝒙, 𝒙′

)
= 𝜙 (𝒙)T 𝑴𝜙

(
𝒙′

)
(7)

This matrix encodes the dependence between substructures
and can be learned automatically. In some cases, if the
relationship is explicit, 𝑴 can be pre-computed, e.g.,
𝑴 (𝑖, 𝑗) can be Levenshtein distance (edit distance - the
number of node/edge addition/deletion steps to transform
a substructure 𝑔𝑖 to another substructure 𝑔 𝑗). Eq. 7 is
a general frameworks that can be applied to a lot of
substructures such graphlets, subtree pattern [58, 59] or
random walks [60].

HONE (Higher-order Network representation learning)
[61] also uses a motif counting strategy to capture the
higher-order structural dependence by first defining a set of
motifs, which essentially are graphlets or orbits (graphlet
automorphisms) and then building a weighted motif adja-
cency matrix for each motif, whose element (𝑖, 𝑗) counts
the number of occurrences of edge (𝑖, 𝑗) ∈ 𝐸 in that motif.
The structural matrix A, which is actually a derived matrix,
such as transition matrix, (normalized) Laplacian matrix,
random walk-based Laplacian matrix, of each weighted
motif adjacency matrix, is computed and the local/global
embedding is learned for each 𝑘-step structural matrix
A𝑘 using matrix factorization techniques described in
Subsec. III.2

To encode the higher order local structures for node
embedding learning, mGCMN (graph convolutional multi-
layer networks based on motifs) [62] follows the same
idea of motif counting matrix similar to [61]. This means
an element (𝑢, 𝑣) of its custom motif matrix A indicates
the number of occurrence of the nodes 𝑢 and 𝑣 in the
corresponding motif. But unlike [61], mGCMN accepts
the case when 𝑢 and 𝑣 are the same node. The custom
motif matrix is fed into a graph neural network with
convolutional layers, MLP layers and a softmax layer for
a final embedding.

33

Research and Development on Information and Communication Technology

Ghadeer Abuoda et al. [63] leverage motifs to form high-
order topological features to predict the existence of new
links. The paper focuses on small motifs of size 3, 4 and 5,
whose corresponding number of connected non-isomorphic
motifs are 2, 6 and 21. Each motif forms a corresponding
feature and therefore there are 29 features, which allows
to capture the high level of topological details of graphs.
Finally, a traditional classifier is built on these extracted
features to perform a link prediction task.

Motif-based methods are powerful tools to learn the
higher-order structures in graphs and have a wide range of
applications in various areas, especially applications require
structural information such as molecular or protein struc-
tures. Comparing with other graph structure approaches,
motif discovery algorithms are still time-consuming in
terms of high performance time in measuring statistics of
motifs in large graphs, preventing us from employing motifs
with larger size (i.e., >5 nodes). In the future, further efforts
are needed to accelerate motif discovery algorithms.

IV. GRAPH ISOMORPHISM

When developing machine learning systems on graphs,
one has to deal with another special characteristics of graph
data: graph isomorphism. An isomorphism between two
graphs 𝐺 and 𝐺′ is a bijection between their node sets
𝑉 and 𝑉 ′ that preserves adjacency [64]. In this case, two
graphs are isomorphic. Graph isomorphism problem is to
determine whether two given graphs are isomorphic or not.
This is known to be unresolved and still an open problem
in computer science. The complexity of the problem is
unknown. The achievements in graph isomorphism research
show that its complexity is not known to be in NP-
complete or be solvable in polynomial time [20]. One
of the most popular and practical algorithms to check
graph isomorphism until now is Weisfeiler-Lehman test
[22], which allows to efficiently eliminate non-isomorphic
graphs. Since graph topologies are usually represented via
popular structural matrices A and their properties are
encoded in feature matrices 𝑿, isomorphism causes row
permutation in 𝑿 and row/column permutation in A. As
a result, two isomorphic graphs look different but are
actually the same and there exists a permutation matrix
𝑷 ∈ {0, 1}𝑁𝑣×𝑁𝑣 transforming the structural and feature
matrices of this graph into ones of the other. To develop
an algorithm 𝑓 handling graph isomorphism, there are two
important definitions related to permutation invariance as
follows:

• Permutation invariance: [65]: a function 𝑓 (A, 𝑿)
is permutation invariant if the output is unchanged for
any node ordering 𝑓

(
𝑷A𝑷T, 𝑷𝑿

)
= 𝑓 (A, 𝑿).

• Permutation equivariance [65]: a function 𝑓 (A, 𝑿)
is permutation equivariant if permuting the input or
the output of the function obtains the same result
𝑓

(
𝑷A𝑷T, 𝑷𝑿

)
= 𝑷 𝑓 (A, 𝑿).

In recent years, designing permutation invariant graph
learning systems has been receiving increased attention
in literature. Specifically, a theoretical line of studies on
permutation invariant architectures and universal approx-
imation on graphs has been introduced for graph neural
networks, starting with a seminal work of Deep Sets
[66]. In [66], Manzil Zaheer et. al investigate permutation
invariant and equivariant functions operating on sets. The
key contribution is the theorem stating that a set function
is invariant to the permutation of elements in a given set
from a countable domain iff it can be decomposed into the
following form:

𝑓 (A, 𝑿) = 𝑓𝝆
(
⊕ 𝑓𝝍 (A, 𝑿)

)
(8)

where 𝑓𝝍 is permutation equivariant, 𝑓𝝆 is an arbitrary
function and ⊕ is permutation invariant operator such as
sum, min, max. Eq. 8 plays an important role because most
graph neural networks with permutation invariance capacity
are following this fundamental architecture. However, the
constraint of countable domain in [66] hinders the invariant
architecture above from effective implementation for real-
world applications. [67] considers a specific case of sum-
decomposition, where ⊕ is a summation, and extends the
framework to continuity on uncountable domain for more
practical usefulness.

To deeply investigate the invariance and equivariance
properties of graphs, some studies [68] pay attention to
linear layers that are the building-blocks of most deep
networks. For graph data, [68] proves that the dimensions
of all permutation invariant and equivariant linear layer
spaces are 2 and 15 respectively. More importantly, these
dimensions are independent of the number of vertices and
therefore invariant and equivariant networks can be applied
to different-sized graphs. Orthogonal basis of these spaces
are computed and introduced in the paper to build linear
layers with invariance and equivariance capacities.

Haggai Maron et. al. [69] examine on the capacity of
neural networks, whose architecture consists of a sequence
of linear equivariant layers, non-liner layers and invariant
layers, similar to [66], to approximate any (continuous)
invariant function. The paper considers the general cases
of any subgroups of a symmetric group acting on R𝑛 by
permuting coordinates. Suppose that a G-invariant function
is a function satisfying 𝑓 (𝑔 · 𝑥) = 𝑓 (𝑥) for all element
𝑥 ∈ R𝑛 and action 𝑔 in the subgroup. Results from the
paper show that a G-invariant network can be a universal
approximator of arbitrary continuous G-invariant function

34

Vol. 2022, No. 1, March

if high-order tensors are allowed. If group is a set, only the
first order G-invariant network (with maximal tensor order
of 1) is required to be universal and one instance is shown
in [66]. The work of k-IGNs [69] is the first step to discover
the approximation power of invariant networks in general
and deep networks on graphs in particular, rendering better
understanding of the limitation and capacity of invariant
architecture. The work of [69] is confirmed in [70], which
introduces an alternative proof based on Stone-Weierstrass
theorem for algebra of real-valued functions. Furthermore,
[70] extends the results to equivariant functions using a
novel generalized version of Stone-Weierstrass theorem.

It is notable that not all graph learning methods are
equipped with permutation invariant or equivariant oper-
ators (for example, GraphSAGE with LSTM aggregation
[71]) and hence, theoretically, they are unable to han-
dle isomorphic graphs in practice. This section reviews
common techniques to train permutation invariant graph
learning systems. Further, although permutation invariance
and equivariance are equally crucial in theory, invariance
property has been receiving more attention for graph data
due to its direct connection to graph isomorphism problem.
Hence, we mainly focus on introducing graph learning
methods with permutation invariance in the following part
and leave the review on permutation equivariant systems
for future work.

1. Aggregation function (readout function)

A fundamental approach to build a permutation invariant
system relies on ordering invariant aggregation functions.
Aggregation functions (or readout functions or pooling
layers) are used to gather the information of a node and
nodes/edges in its neighborhood. Most methods in this
approach follows the framework proposed in [66] with
a permutation equivariant function 𝑓𝝍 and permutation
invariance aggregation operator ⊕ followed by an arbitrary
function 𝑓𝝆 (Eq. 8). The most popular permutation invariant
aggregators are sum, product, minimum, maximum, covari-
ance, some of which are reviewed in this section.

[72] introduces a framework, named Graph Isomorphism
Network (GIN), which is as powerful as Weisfeiler-Lehman
graph isomorphism test. To ensure the permutation invari-
ance capacity, a readout function/pooling layer aggregates
node features to yield graph representations. The paper
examines three permutation invariant functions including
sum, mean and max aggregators and ranks them by ex-
pressive power. Namely, one with the most representational
power is sum that describes the whole multi-set whilst
mean expresses the distribution of the multi-set and max
reduces the multi-set to a simple set. Since mean and max

aggregators are not injective, they are weaker in distin-
guishing isomorphism than sum operators. This explains
the common choice of sum operators in existing invariance
systems [67, 72].

Set Transformer [73] is designed to model the interac-
tions of input set elements. The proposed architecture con-
sists of an encoder, which is equivariant to permutation, and
a decoder, whose pooling layer is a permutation invariant
transformation or essentially is a sum of outputs from the
encoder. Unlike most popular networks, which are based on
GCNs or their variants, Set Transformer is completely built
on layers with attention mechanism and therefore it allows
to learn the high-order connections between elements in
sets.

Besides providing permutation invariance, some stud-
ies such as Bilinear GNN [74] extends the capacity
of aggregators to capture interactions between neighbor
nodes, which is not encoded by existing models. To
that end, Bilinear GNN computes the sum of all node
pairs in the neighborhood of a node 𝑣, namely 𝑓 (𝑣) =

2
𝑑𝑣 (𝑑𝑣+1)

∑
𝑖∈N(𝑣)∪{𝑣}

∑
𝑗∈N(𝑣)∪{𝑣}&𝑖< 𝑗 𝒉𝑖𝑾⊙𝒉 𝑗𝑾, where

𝑑𝑣 is the degree of the node 𝑣. The interaction between
two nodes is effectively modeled via element-wise product
between their representation vectors. It is notable that the
interaction aggregation takes the central node into account
to enrich the aggregation result in the case of sparse local
structures with several neighbors.

A drawback of aggregation operators of sum, max or min
is its scalar output, causing the significant loss of informa-
tion, especially for local structures with many nodes. Based
on the idea of vector output in capsule networks, GCAPS-
CNN (Graph Capsule Convolutional Neural Networks [75]
is able to capture higher order statistical information of
adjacent nodes. Given a hidden representation vector 𝑯 (𝑙)

at the layer 𝑙, GCAPS-CNN calculates the covariance of
𝑯 (𝑙) , which is known to be invariant to permutation, as

𝑓

(
𝑯 (𝑙)

)
= 1
𝑁

(
𝑯 (𝑙) − `

)T (
𝑯 (𝑙) − `

)
, where ` is the mean

vector of 𝑯 (𝑙) . Compared with scalar aggregators, much
information of data distribution is preserved in covariance
such as shape, norm and angles between node features.
GCAPS-CNN can be classified as a permutation invariance
aggregator based on matrix multiplication.

Similarly, PiNet (Permutation Invariant Graph Neural
Network) [76] is an end-to-end permutation invariant net-
work using matrix multiplication. A feature matrix 𝑿 and
an adjacency matrix 𝑨 are passed through neural layers
to obtain the representation matrices 𝒁𝑿 ∈ R𝑁𝑣×𝑁𝑿 and
𝒁𝑨 ∈ R𝑁𝑣×𝑁𝑨 respectively, where 𝑁𝑿 and 𝑁𝑨 are the cor-
responding hidden dimensions. Next, these two matrices are
combined in a product layer 𝒁T

𝑿 𝒁𝑨 ∈ R𝑁𝑿×𝑁𝑨 , which is

35

Research and Development on Information and Communication Technology

invariant to node orders(𝑷𝒁𝑿)T (𝑷𝒁𝑨) = 𝒁T
𝑿

(
𝑷T𝑷

)
𝒁𝑨 =

𝒁T
𝑿 𝒁𝑨 for any permutation matrix 𝑷. Basically, the element
(𝑖, 𝑗) of the product matrix is the inner product of the 𝑖th

feature-related representation vector and the 𝑗 th structural
representation vector across all nodes.

Due to the efficiency and scalability, especially for huge
social networks, aggregation-based approach is the most
practical choice to develop graph learning systems with
permutation invariance power. However, compressing huge
amount of neighborhood information into single scalars or
vectors via aggregators such as sum or max causes the sig-
nificant loss of information and results in the misclassifca-
tion between non-isomorphic graphs. Although high-order
tensors [69] help to improve the power of discrimination,
they add more computation cost. Therefore, developing
effective aggregation methods that balance the representa-
tion power and scalability is a challenging question in this
research direction.

2. Ordering-based approach

To overcome the loss of information when using ag-
gregation functions, a few attempts have been done to
preserve the information of neighbor nodes but still satisfy
permutation invariance constraint by sorting them to form
a consistent sequence, which is the same for any node
permutation. The idea is based on the basic property of
sorting: given a sequence of real-valued numbers, sorting
algorithms produce the same ordered sequence, e.g., as-
cending or descending order, for its permuted sequences
and the ordered sequence can be considered as canonical
form of the input sequence. As a result, two isomorphic
graphs have the same representation after sorting step and
then the goal of permutation invariance is obtained.

Deep Graph Convolutional Neural Network (DGCNN)
[4] proposes a sorting-based pooling layer, named SortPool-
ing, to reorder nodes by representation values in a consis-
tent and meaningful manner. Support that after passing all
graph convolution layers, the concatenated representation
matrix is 𝑯 (1:𝑁𝑙) ∈ R𝑁𝑣×𝑁𝑐 ,where 𝑁𝑐 =

∑𝑁𝑙
𝑙=1 𝑁𝑐

(𝑙) is
the total number of channels over all representation layers,
𝑯 (1:𝑁𝑙) is sorted row-wise according to the last column of
𝑯 (1:𝑁𝑙) . If two rows have the same last column values, the
second last and the next one is used for comparison until
an order can be identified. Basically, this sorting strategy
is colexicographical ordering. The proposed SortPooling
has two key advantages compared with scalar aggregation
operators: (1) much information is allowed to pass, render-
ing more meaningful representations and (2) by storing the
order of SortPooling layer’s input, the initial state of the
node (before sorting) can be restored and this also enables
to do back-propagation for SortPooling.

PATCHY-SAN [24] is a graph learning method that
strictly follows the intuition of CNNs’ filters on local recep-
tive fields with fixed size and defined neighboring order. To
that end, for a selected node 𝑣, PATCHY-SAN first extracts
𝐾 neighbor nodes using a breath-first search algorithm
with increasing distance from the target node 𝑣 and find
an optimal order for this 𝐾-node sequence. Unlike the
aforementioned methods which simply perform a sorting
procedure, PATCHY-SAN implements an optimization step
to find an optimal solution as canonical ordered sequence.
In particular, the graph labeling optimization problem is
𝑙 = argmin

𝑙

E
[��� 𝑓 dis

𝑨

(
𝑨𝐺′

𝐾
, 𝑨𝐺′′

𝐾

)
− 𝑓 dis (

𝐺′
𝐾
, 𝐺′′

𝐾

) ���] , where

𝑓 dis
𝑨 and 𝑓 dis are distance functions on graphs and adjacency

matrices with 𝐾 nodes. By solving this object function,
we can obtain an optimal node order 𝑙 such that, for any
uniformly random graphs 𝐺′

𝐾
and 𝐺′′

𝐾
from a graph collec-

tion with 𝐾 nodes, the expected difference between random
graphs is minimized. The advantage of optimization-based
approach is that it not only works on isomorphic but also
similar graphs with different connections and therefore
more generalization in practice.

For molecule related problems, Coulomb matrix is
adopted to describe the basic properties and structures of
molecules and it is formulated as follows:

𝐶 (𝑖, 𝑗) =

0.5𝒛2.4
𝑖
∀𝑖 = 𝑗

𝒛𝑖𝒛 𝑗

|𝒓 𝑖−𝒓 𝑗 | ∀ 𝑗 ≠ 𝑗

where, 𝒛𝑖 and 𝒓𝑖 are the charge and 3D position of the 𝑖th

atom in a given molecule. Basically, the elements on the
diagonal indicate polynomial fit of the potential energies
of the free atoms whilst the other elements are Coulomb
repulsion between nuclei pairs. Since Coulomb matrix
lacks the capacity of permutation invariance, rendering the
exponential blow-up of Coulomb descriptors for the same
molecule. [77] proposes to transform 𝐶 to spectral form
by computing the eigen-decomposition and use the sorted
eigen-values of 𝐶 as permutation invariant representation
vector. Gregoire Montavon et. al [78] introduce another
solution in spatial domain by reordering rows of 𝐶 ac-
cording to their norms. To deal with larger dimensionality,
the paper also introduces the idea of adding a random
noise to row norms before sorting to generate more sorted
Coulomb matrices per molecule for data augmentation.
Among three methods, randomly sorted Coulomb repre-
sentation produces the best performance for the problem of
atomization energy prediction [78].

EigenPool (Eigenvector-based Pooling Layers) [79] de-
velops permutation invariance operators by sorting eigen-
values in spectral domain. EigenPool is a graph convo-
lutional network that consists of coarse-to-fine groups of

36

Vol. 2022, No. 1, March

convolution layers and pooling layers. The pooling layers
have two steps of: (1) spectral clustering to divide the graph
at the level 𝑙 into several non-overlapping clusters and then
(2) nodes with the same cluster are aggregated by summing
their feature vectors. Since the spectral clustering always
gives the same clustering results for all node permutation,
the final graph representation is permutation invariant.
Spectral graph clustering first converts initial graphs in
spatial domain into spectral domain by applying graph
Fourier transform on graph Laplacian matrix. The top 𝐾

eigen-vectors are sorted by their corresponding eigenvalues
in an ascending order to form a matrix 𝑼 of 𝑁𝑣 ×𝐾 , whose
rows represent the clustering features of the corresponding
nodes in spectral space. A clustering algorithm, such as
𝐾-means, can be applied to group nodes into clusters.
Since the clustering feature of each node is unchanged
under permutation transformation, the clustering results are
completely independent of node order.

Graph isomorphism problem has a strong connection to
graph ordering that is to find an optimal order for all nodes
of a graph [80]. Graph ordering can be thought as a way to
convert graphs into a canonical form, which is identical for
any isomorphic graphs, rendering an invariance to node per-
mutation. [80] proposes a graph ordering neural network,
called Deep Ordering Network with Reinforcement Learn-
ing (DON-RL), towards graph visualization applications,
where isomorphic graphs should have the consistent and
unique visualization in a space. The key intuition is to find
an optimal node ordering that maximizes the following ac-
cumulated locality score 𝑓 (𝜋) = ∑

0≤𝜋𝑢−𝜋𝑣≤𝑤 𝑓 sim (𝑣, 𝑢),
where 𝑢 and 𝑣 are two ordered nodes in a windows of
size 𝑤 and 𝑓 sim (𝑣, 𝑢) is a similarity function. To overcome
the combinatorial explosion of training space, DON-RL is
trained to predict the next node, which should be added to
the current ordered node subset of 𝑉 . The selected node
should be one that maximizes the accumulated locality
score. By adding each node from 𝑉 to the subset until all
nodes are placed, a node ordering is obtained. It can be
seen that DON-RL is similar to PATCHY-SAN[24] in terms
of automatically learning node ordering, but unlike [24],
optimization is obtained via more advanced Reinforcement
Learning framework in DON-RL.

The benefit of ordering-based approach compared with
aggregation function is to allow much information pass
through the pooling/sorting layers. This helps to construct
more distinctive and meaningful features for downstream
tasks. The main drawback of this approach is more compu-
tation cost is required to arrange sequences in an expected
order. Sometimes, due to noise and approximation errors
(e.g., of eigen-decomposition implementation or optimiza-
tion algorithms), sorting results are not always the same as

in theory. However, ordering-based approach, along with
aggregation functions, are still effective solutions for build-
ing graph learning systems invariant to node permutation.

3. Histogram-based methods

Histograms are fundamental and popular representations
across many fields. Basically, a histogram is a frequency
vector, where each index is associated with an object
of interest and the corresponding element represents the
number of times that object occurs. In graph learning,
objects are substructures including subgraphs (also known
as graphlets, motifs or graph fragments) [81] or special
structures such as shortest paths, subtrees, random walks
[24], cycles or cliques [82]. Given a dictionary 𝚺 of com-
mon substructures, the idea of histogram-based approach
to encode a graph is to count the frequency of substruc-
tures in the graph and map to a fixed size and ordered
representation vector. Although graph isomorphism impacts
on the order/label of nodes in graphs, local structures
are unchanged and hence frequency vectors are consistent
for isomorphic graphs. In other words, two isomorphic
graphs share the same substructure distributions. However,
since this approach does not take positional relationship of
substructures into account, two graphs with different local
substructure arrangement still have the same representation
vector.

Substructure counting techniques are common in graph
kernel methods that are based on idea of designing a
kernel function to measure the similarity between any two
graphs and then applying kernel methods, e.g., SVMs [56],
to perform machine learning tasks. An example is the
early work of graphlets [55], where the kernel function
is defined as inner product between two frequency vec-
tors, which count the frequency of graphlets with size of
𝑘 ≤5, namely 𝑘graphlet (𝐺,𝐺′) = 𝜙𝐺 (𝒈)T 𝜙𝐺 (𝒈′). Other
substructures with lower computation cost can be used,
for example, subtree patterns [57] or random walks [57].
Computing frequency of a graphlet with size of 𝑘 requires
to enumerate all graphlets of size 𝑘 in a given input graph.
The complexity is O

(
𝑁 𝑘𝑣

)
, which is expensive. Sampling is

an alternative solution which draws a sufficient number of
graphlets randomly from the input graph. The expectation
is that if the number of drawn samples is large enough,
the approximate graphlet distribution is close to the true
distribution. By choosing the proper number of samples,
this approach allows to balance between the accuracy and
the efficiency in practical applications, especially ones
related to large graphs.

Instead of building a huge graphlet dictionary from
training data and suffering the expensive graph encoding
cost due to too many graphlets need to be counted [57],

37

Research and Development on Information and Communication Technology

Dimistris Floros et. al [83] use a predefined dictionary of
limited size of 16 graphlets to speed up the process. For any
input graph with 𝑁𝑣 vertices, an vertex-graphlet incident
matrix ∈ R𝑁𝑣×|𝚺 | to describe the occurrence frequency of
a graphlet in 𝚺 at the 𝑖th node. As a result, any two nodes
at the same orbit (a subset of vertices symmetric under
permutations [82, 83]) have the same frequency vector,
resulting in orbit-invariance.

With the dominance of message passing based GNNs
in literature, [82] introduces GSN (Graph Structure Net-
works) to overcome the limitations of conventional GNNs.
Although substructures play an important role in many
studies of networks, e.g., molecules or proteins, existing
GNNs mostly discover the features of a node itself or the
aggregated features of its neighbors rather than its local
structures. As the result, the expressive power of GNNs
is only equivalent to Weisfeiler-Lehman test. To leverage
the source of rich information from substructures, GSN
proposes to integrate a subgraph isomorphism counting
function for node feature encoding. Let 𝚺 be the collec-
tion of small substructures, e.g., cycles of fixed length or
cliques. For a substructure 𝑔𝚺 ∈ 𝚺, let Aut

(
𝑔𝚺

)
denote the

set of all unique automorphism of 𝑔𝚺. For any input graph
𝐺, support that 𝑔 ∈ 𝐺 is a subgraph of 𝐺 and isomorphic
to 𝑔𝚺 via a bijection mapping 𝑓 iso from 𝑉𝑔 to 𝑉𝑔𝚺 , the
structural feature at node 𝑣 with respect to substructure 𝑔𝚺

is defined as:

𝒙𝑔
𝚺 ,𝑖
𝑣 =

��{𝑔≃𝑔𝚺 : 𝑣 ∈ 𝑔 s.t. 𝑓 iso (𝑣) ∈ 𝑂𝑔𝚺 ,𝑖
}����Aut

(
𝑔𝚺

) ��
𝒙𝑔

𝚺

𝑣 =

[
𝒙𝑔

𝚺 ,1
𝑣 , 𝒙𝑔

𝚺 ,2
𝑣 , ..., 𝒙

𝑔𝚺 ,𝑁
𝑔𝚺

𝑣

]
where 𝑂𝑔𝚺 ,𝑖 is the 𝑖th unique element of the quotient
of the automorphism acting on the substructure 𝑔𝚺. By
enumerating all substructures 𝑔𝚺

𝑖
in 𝚺 and concatenating

their structural features, we obtain the vertex structural

feature of a node 𝑣 as: 𝒙𝑣 =

[
𝒙
𝑔𝚺1
𝑣 , 𝒙

𝑔𝚺2
𝑣 , ..., 𝒙

𝑔𝚺|𝚺 |
𝑣

]
. Another

edge-related structural feature is introduced in [82]. These
structural features along with conventional hidden vertex
features 𝒉 (𝑙)𝑣 are plugged into a message passing framework
[84] defined in a general manner. GSNs are proven to be
at least as powerful as MPNNs (Message Passing Neural
Networks) [84] and 1-WL test.

Unlike nodes or edges, which are basic elements in
graphs, substructures are higher-order components contain-
ing crucial topological information and unique characteris-
tics of a graph. These components can help to distinguish
different graphs better than many permutation invariance
techniques [82]. But recognizing substructures of interest

in a large graph is not a trivial task because substructures
are essentially graphs and also affected by isomorphism.
Furthermore, enumerating large graphs for higher-order
substructure counting is time consuming, hindering the
popularity of this approach and its applicability in practice.
However, recent advances in discovering theoretical expres-
sive power [85] of substructures and their practical repre-
sentation capacity of real complex topology reveal their
potential to develop more powerful graph representation
systems.

4. Permutation sampling

Another line of studies, which does not explicitly design
permutation invariance functions but forces instead models
to deal with permutations, is permutation sampling. The
intuition is to train models on data, which is randomly
permuted. It seems to be unsound in theory at the first
glance but it is actually associated with exchangeability in
probability distributions [86, 87].

One of general form of permutation sampling is Janossy
pooling [86] that represents permutation invariant functions
as the average of a permutation-sensitive function acting
on all reorderings of input sequences. Let 𝑓 arb (·) denote
arbitrary function that can accept any variable-size finite
input sequences 𝒉 with the length of |𝒉 |, and 𝜋 is a
permutation in a set Π |𝒉 | of all permutation of 𝒉.

𝑓 (|𝒉 | , 𝒉) = 1
|𝒉 |!

∑︁
𝜋∈Π|𝒉 |

𝑓 arb (|𝒉 | , 𝒉) (9)

Theoretically, Π |𝒉 | and sum are invariant to the order of in-
put sequences and hence 𝑓 (|𝒉 | , 𝒉) becomes a permutation
invariant function. Computing the sum over permutation set
Π |𝒉 | is expensive, an approximation is required for compu-
tational tractability. In [86], the authors propose three meth-
ods of approximation: 1) convert 𝒉 into a canonical form,
e.g., sorting (Subsec. IV.2), before feeding it into 𝑓 arb (·);
2) still employ Eq. 9 but on some small first 𝑘 elements of
input sequences; and 3) evaluate the sum via some random
permutation samples from Π |𝒉 | instead of all its elements.
These methods offer significant computational savings and
can be implemented in practice. Relational Pooling [88] is
an extension of Janossy Pooling. Although they share the
same idea of summing over all permutation set, Relational
Pooling works directly on the structural matrix and the
feature matrix 𝑓 (𝐺) = 1

|𝑉 |!
∑
𝜋∈Π|𝑉 | 𝑓

arb (
A𝜋,𝜋 , 𝑿 𝜋

)
. The

experiments in the paper shows that RP-GNN, which is
actually GNN with Relational Pooling, is more expressive
than Weisfeiler-Lehman test [88]. It means that RP-GNN
can distinguish pairs of non-isomorphic graphs that cannot
be recognized by Weisfeiler-Lehman test.

38

Vol. 2022, No. 1, March

Local Relational Pooling (LRP) [81] adopts the frame-
work of Relational Pooling [88] but applies to local struc-
tures of egonets. An egonet of a depth 𝑟 at a specific node
𝑣 is an induced subgraph including 𝑣 and its neighbor-
hood N𝑟𝑣 that consists of all nodes within the distance
of 𝑟. For Relational Pooling, we have to consider all
permutations of nodes in N𝑟𝑣 . However, since egonets are
rooted graphs, the computational cost reduces to a subset
of N𝑟𝑣 , which is equivalent to breath-first-search (BFS)
at 𝑣. Formally, Local Relational Pooling is defined as:
𝑓 (𝑣) = 1

|𝑉BFS |!
∑
𝜋∈Π|𝑉BFS | 𝑔

(
A𝑣
𝜋, 𝜋

)
. To further improve

the speed, only 𝑘 ordered nodes in BFS list is considered
rather than taking all nodes in the egonets. For a network
with a bounded degree, the complexity of the pooling layer
grows linearly with respect to the number of vertices.

Edo Cohen-Karlik et. al [89] adopt the idea of [86] by
feeding randomly permuted input sequences but the authors
apply it to building a regularizer towards permutation in-
variance for RNNs. The goal of RNNs is to train a function:
𝑓 : S × X → 𝑆 starting from an initial state 𝒔0. The state
at the time 𝑡 + 1 is updated via the previous state as: 𝒔𝑡+1 =

𝑓 (𝒔𝑡 , 𝒙𝑡) . To learn a permutation invariance function 𝑓 ,
which produces the same output regardless of any input or-
der, [86] introduces subset invariance regularization (SIRE).
For a training subset with the same output, SIRE should
be zero otherwise it should penalize for different outputs.
More interestingly, the authors prove that this can be
obtained efficiently by swapping any two elements 𝒙1 and
𝒙2 during training, resulting in the following regularization
term: E𝒔∈S

[
(𝑓 (𝒔, 𝒙1, 𝒙2) − 𝑓 (𝒔, 𝒙2, 𝒙1))2

]
, where 𝒙1 and

𝒙2 are two new inputs and 𝑓
(
𝒔, 𝒙𝑖 , 𝒙 𝑗

)
= 𝑓

(
𝑓 (𝒔, 𝒙𝑖) , 𝒙 𝑗

)
.

Moreover, RNNs trained with SIRE use fewer parameters
than Deep Set based approach [66].

Some studies [71, 90] follow the strategy of permutation
sampling but reduce the computational cost by drawing
only one sample instead of a large batch of samples. Deep
Collective Inference (DCI) [90] is an example, which im-
plements a RNN-based framework for collective inference.
Namely, for a particular node, DCI transforms the target
node and its neighbors into an unordered node sequence
before feeding into a RNN to predict corresponding class
outputs. Meanwhile, GraphSAGE [71] offers to uniformly
sample the fixed number of nodes in neighborhood in its
aggregation step.

Permutation sampling approach can be applied to learn
permutation invariance in many complex models, such as
LSTMs or RNNs, for which it is challenging to explicitly
design a permutation invariance function. Additionally,
sampling allows significant computational savings, which is
especially helpful for training heavy models. Although this
approach is still gaining less attention from community in

both theoretical and practical research, recent achievements
[71, 90] are fairly promising.

V. DISCUSSION

In this section, we briefly summarize and analyze ex-
isting approaches and open issues for graph structure and
permutation invariance learning:

Graph structure learning: Structural matrix factor-
ization and spectral domain-based methods are classical
approaches and usually face the problem of high com-
putational cost, hindering their applicability in real-world
scenarios. Node embedding are node-level models without
parameter sharing and therefore they are not suitable for
popular applications related to entire graphs. Two existing
approaches, which most graph learning studies are focusing
on, are ones based on graph coloring and aggregation
operators. These techniques can be observed in recent
state-of-the art graph neural networks nowadays due to
their efficiency and accuracy. However, they usually rely
on simple and easy-to-compute substructures and therefore
discovering higher and complex structures should be con-
sidered and explored. For motif-based methods, although
they are very powerful to represent local topology, their
expensive cost is limiting the number of research on this
direction. But integrating motifs into existing graph learning
systems will be a potential to improve the power of graph
structure learning.

Permutation invariant learning: Histogram-based
methods are widely used in kernel methods but have not
been studied in recent years because of their high cost
to find patterns of interest in large graphs to construct
histograms. By contrast, aggregation function and ordering-
based approaches are dominating the literature to date due
to better balance between accuracy and speed. Compared
with ordering-based approach, aggregation functions are
much faster but they usually have the problem of in-
formation loss. However, recent theoretical and practical
results show that aggregation functions with higher-order
tensors can expand the capacity of distinguishing isomor-
phic graphs, shining a light onto building better permutation
invariance systems. For complex graph learning systems,
which are infeasible or costly to integrate permutation
invariance functions by design, training permutation in-
variance models using permutation sampling is a potential
direction with some promising results [71, 90]. However,
since there are a few studies following this direction,
further research should be conducted to comprehensively
verify and evaluate its effectiveness in both theoretical and
practical aspects.

Some open issues of both graph structure and isomor-
phism invariance learning can be listed as follows:

39

Research and Development on Information and Communication Technology

• Scalability: Designing systems to work efficiently
on large graphs is not only a big challenging for
graph learning but also for any graph-related problems.
Basically, the number of substructures and patterns
increase according to graph size, resulting in a signifi-
cant increase in the cost of enumerating nodes and en-
coding local structures. Many graph structure learning
methods depend on fundamental structure matrices,
which become inefficient on such large graphs. For
isomorphism test, comparing two large graphs to verify
whether they are isomorphic or not is expensive as
well. Therefore, there is an open question about de-
veloping better algorithms that balance between speed
and accuracy for large-scale graphs.

• Complex Graphs: The majority of graph structure
learning and permutation invariance studies are con-
ducted on undirected homogeneous graphs. But more
sophisticated graphs can be seen in real-world applica-
tions. Some examples are directed graphs that imply
the direction of the relationship between entities or
heterogeneous groups whose nodes and edges can have
different types or dynamic graphs whose nodes and
edges change over time. All such types of graphs
usually require algorithms with proper designs and
optimizations in order to maintain good performance
in real-world scenarios.

• Higher-order substructures: High-order substruc-
tures often contain more meaningful information. This
not only allows to describe complicated graph topol-
ogy but also helps to better distinguish more non-
isomorphic graphs. However, since substructures are
actually graphs, recognizing and encoding them re-
quire more cost with respect to their structure com-
plexity. With the lack of efficient methods to process
higher-order substructures, most existing graph learn-
ing models are still based on simple graph elements for
efficiency. But we believe that, with the rapid growth
and development of deep learning in recent years,
discoveries and advances on higher-order substructures
can bring us more powerful graph learning systems in
the near future.

VI. CONCLUSION

This survey has given a comprehensive review on graph
learning advances in recent years. Particularly, it focuses
on two fundamental but important topics of graph learn-
ing, which are graph structure learning and permutation
invariance learning. For each topic, we examine existing ap-
proaches and provide detailed analysis on its pros and cons.
Future directions of these topics are also discussed and
explained. We hope that this survey can help researchers to

better understand these topics as well as the broader field
of graph learning, one of hot areas in machine learning
nowadays.

REFERENCES
[1] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu,

“Graph learning: A survey,” IEEE Transactions on Artificial
Intelligence, pp. 1–1, 2021.

[2] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A
survey,” 2018.

[3] J. Leskovec, “Representation Learning on Net-
works,” WWW-18 Tutorial, 2018. [Online]. Available:
http://snap.stanford.edu/proj/embeddings-www/

[4] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An End-to-
End Deep Learning Architecture for Graph Classification,”
in Proceedings of the 32nd Conference on Artificial Intelli-
gence (AAAI), New Orleans, Louisiana, USA, February 2-7
2018, pp. 4438–4445.

[5] W. Cao, Z. Yan, Z. He, and Z. He, “A comprehensive
survey on geometric deep learning,” IEEE Access, vol. 8,
pp. 35 929–35 949, 2020.

[6] M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: Going beyond eu-
clidean data,” IEEE Signal Processing Magazine, vol. 34,
no. 4, pp. 18–42, Jul. 2017.

[7] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation
Learning on Graphs: Methods and Applications,” IEEE Data
Eng. Bull., vol. 40, no. 3, pp. 52–74, 2017.

[8] H. Cai, V. Zheng, and K. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 30, pp. 1616–1637, 2018.

[9] M. Kinderkhedia, “Learning representations of graph data:
A survey,” 2019.

[10] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun,
“Graph neural networks: A review of methods and applica-
tions,” CoRR, 2018.

[11] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
Comprehensive Survey on Graph Neural Networks,” CoRR,
2019.

[12] Z. Chen, F. Chen, L. Zhang, T. Ji, K. Fu, L. Zhao, F. Chen,
and C. Lu, “Bridging the gap between spatial and spectral
domains: A survey on graph neural networks,” CoRR, 2020.

[13] K. Borgwardt, E. Ghisu, F. Llinares-López, L. O’Bray,
and B. Rieck, “Graph kernels: State-of-the-art and future
challenges,” Foundations and Trends in Machine Learning,
vol. 13, no. 5-6, pp. 531–712, 2020.

[14] G. Nikolentzos, G. Siglidis, and M. Vazirgiannis, “Graph
kernels: A survey,” CoRR, vol. abs/1904.12218, 2019.

[15] Y. Zhu, W. Xu, J. Zhang, Q. Liu, S. Wu, and L. Wang,
“Deep graph structure learning for robust representations: A
survey,” CoRR, 2021.

[16] C. Zhuang and Q. Ma, “Dual graph convolutional networks
for graph-based semi-supervised classification,” in Proceed-
ings of World Wide Web Conference (WWW), Lyon, France,
2018, pp. 499–508.

[17] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learn-
ing graph representations,” Proceedings of the Conference
on Artificial Intelligence (AAAI), vol. 30, no. 1, Feb. 2016.

[18] Y. Yang, H. Chen, and J. Shao, “Triplet enhanced au-
toencoder: Model-free discriminative network embedding,”
in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence (IJCAI), Macao, China,
August 10-16 2019, pp. 5363–5369.

[19] F. R. K. Chung, Spectral Graph Theory, Providence, RI,
1997.

40

Vol. 2022, No. 1, March

[20] M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H.
Freeman, 1979.

[21] D. Bieber, “The Weisfeiler-Lehman Isomorphism test,” 2019.
[Online]. Available: https://davidbieber.com/post/2019-05-
10-weisfeiler-lehman-isomorphism-test/

[22] B. Weisfeiler and A. Leman, “The reduction of a graph
to canonical form and the algebra which appears therein,”
Nauchno-Technicheskaya Informatsia, 1968.

[23] L. Babai, P. Erdös, and S. M. Selkow, “Random graph
isomorphism,” SIAM J. Comput., vol. 9, no. 3, pp. 628–635,
1980.

[24] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning Con-
volutional Neural Networks for Graphs,” in Proceedings of
The 33rd International Conference on Machine Learning
(ICML), vol. 48, New York, New York, USA, 20–22 Jun
2016, pp. 2014–2023.

[25] M. D. G. Mallea, P. Meltzer, and P. J. Bentley, “Capsule
Neural Networks for Graph Classification using Explicit
Tensorial Graph Representations,” arXiv, 2019.

[26] H. Jin, W. Yu, and S. Li, “Graph regularized nonnegative ma-
trix tri-factorization for overlapping community detection,”
Physica A: Statistical Mechanics and its Applications, vol.
515, no. C, pp. 376–387, 2019.

[27] M. Huang, Q. Jiang, Q. Qu, and A. Rasool, “An overlapping
community detection approach in ego-splitting networks us-
ing symmetric nonnegative matrix factorization,” Symmetry,
vol. 13, no. 5, 2021.

[28] G. Ceddia, P. Pinoli, S. Ceri, and M. Masseroli, “Matrix
factorization-based technique for drug repurposing predic-
tions,” IEEE J. Biomed. Health Informatics, vol. 24, no. 11,
pp. 3162–3172, 2020.

[29] A. Mitra, P. Vijayan, S. Parthasarathy, and B. Ravindran,
“A unified non-negative matrix factorization framework for
semi supervised learning on graphs,” in Proceedings of In-
ternational Conference on Data Mining (SDM), Cincinnati,
Ohio, USA, May 7-9 2020, pp. 487–495.

[30] F. Ye, C. Chen, and Z. Zheng, “Deep Autoencoder-like
Nonnegative Matrix Factorization for Community Detec-
tion,” in Proceedings of the 27th International Conference
on Information and Knowledge Management (CIKM), USA,
2018, pp. 1393–1402.

[31] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and
J. Tang, “NetSMF: Large-scale network embedding as sparse
matrix factorization,” in The World Wide Web Conference
(WWW), San Francisco, CA, USA, May 13-17 2019, pp.
1509–1520.

[32] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph
structure learning for robust graph neural networks,” in
26th Conference on Knowledge Discovery and Data Mining
(SIGKDD), Virtual Event, CA, USA, August 23-27 2020,
pp. 66–74.

[33] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Graph
structure learning for GCNs,” A workshop paper at Inter-
national Conference on Learning Representations (ICLR),
2019.

[34] W. L. Hamilton, “Graph representation learning,” Synthesis
Lectures on Artificial Intelligence and Machine Learning,
vol. 14, no. 3, pp. 1–159, 2020.

[35] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric
transitivity preserving graph embedding,” in Proceedings of
International Conference on Knowledge Discovery and Data
Mining (SIGKDD), San Francisco, CA, USA, August 13-17
2016, pp. 1105–1114.

[36] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in Proceedings of International
Conference on Knowledge Discovery and Data Mining

(SIGKDD), 2016, pp. 855–864.
[37] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online

learning of social representations,” in Proceedings of In-
ternational Conference on Knowledge Discovery and Data
Mining (SIGKDD), 2014, pp. 701–710.

[38] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei,
“LINE: large-scale information network embedding,” in Pro-
ceedings of the 24th International Conference on World Wide
Web (WWW), Florence, Italy, May 18-22 2015, pp. 1067–
1077.

[39] J. Zhao, X. Wang, C. Shi, B. Hu, G. Song, and Y. Ye,
“Heterogeneous graph structure learning for graph neural
networks,” in Conference on Artificial Intelligence (AAAI),
February 2-9 2021, pp. 4697–4705.

[40] A. Micheli, “Neural network for graphs: A contextual con-
structive approach,” IEEE Transactions on Neural Networks,
vol. 20, no. 3, pp. 498–511, 2009.

[41] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in International Con-
ference on Learning Representations (ICLR), 2017.

[42] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-
end deep learning architecture for graph classification,” in
AAAI, 2018.

[43] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo, “Semi-
supervised learning with graph learning-convolutional net-
works,” in Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, June 16-20
2019, pp. 11 313–11 320.

[44] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” International
Conference on Learning Representations (ICLR), 2017.

[45] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Eigen-gnn:
A graph structure preserving plug-in for gnns,” CoRR, 2020.

[46] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair com-
parison of graph neural networks for graph classification,”
in Proceedings of International Conference on Learning
Representations (ICLR), 2020.

[47] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to net-
works and other irregular domains,” IEEE Signal Processing
Magazine, vol. 30, pp. 83–98, 2013.

[48] A. Sandryhaila and J. M. F. Moura, “Discrete signal pro-
cessing on graphs: Graph Fourier transform,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal
Processing, 2013, pp. 6167–6170.

[49] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević,
“Discrete signal processing on graphs: Sampling theory,”
IEEE Transactions on Signal Processing, vol. 63, no. 24,
pp. 6510–6523, 2015.

[50] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and locally connected networks on graphs,” in In-
ternational Conference on Learning Representations (ICLR),
Banff, AB, Canada, April 14-16 2014.

[51] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolu-
tional neural networks on graphs with fast localized spectral
filtering,” in Advances in Neural Information Processing Sys-
tems (NIPS), D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds., vol. 29, 2016.

[52] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cay-
leynets: Graph convolutional neural networks with complex
rational spectral filters,” IEEE Transactions on Signal Pro-
cessing, vol. 67, no. 1, pp. 97–109, 2019.

[53] S. Yu, Y. Feng, D. Zhang, H. D. Bedru, B. Xu, and F. Xia,
“Motif discovery in networks: A survey,” Computer Science
Review, vol. 37, p. 100267, 2020.

[54] N. Przulj, D. G. Corneil, and I. Jurisica, “Modeling interac-

41

Research and Development on Information and Communication Technology

tome: scale-free or geometric?.” Bioinform., vol. 20, no. 18,
pp. 3508–3515, 2004.

[55] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn,
and K. Borgwardt, “Efficient graphlet kernels for large graph
comparison,” in Proceedings of International Conference
on Artificial Intelligence and Statistics (AISTAT), vol. 5,
Clearwater Beach, Florida USA, 16–18 Apr 2009, pp. 488–
495.

[56] B. Schölkopf and A. J. Smola, Learning with kernels :
support vector machines, regularization, optimization, and
beyond, 2002.

[57] P. Yanardag and S. Vishwanathan, “Deep Graph Kernels,”
in Proceedings of International Conference on Knowledge
Discovery and Data Mining (KDD), USA, 2015, pp. 1365–
1374.

[58] J. Ramon and T. Gärtner, “Expressivity versus efficiency
of graph kernels,” in Proceedings of European Conference
on Machine Learning (ECML/PKDD), Cavtat-Dubrovnik,
Croatia, Sep 22-23 2003, pp. 65–74.

[59] P. Mahé and J. Vert, “Graph kernels based on tree patterns
for molecules,” Mach. Learn., vol. 75, no. 1, pp. 3–35, 2009.

[60] T. Gı̈¿œrtner, P. A. Flach, and S. Wrobel, “On graph kernels:
Hardness results and efficient alternatives.” in COLT, vol.
2777, 2003, pp. 129–143.

[61] R. A. Rossi, N. K. Ahmed, E. Koh, S. Kim, A. Rao,
and Y. Abbasi-Yadkori, “A structural graph representation
learning framework,” in International Conference on Web
Search and Data Mining (WSDM), Houston, TX, USA,
2020, pp. 483–491.

[62] X. Li, W. Wei, X. Feng, X. Liu, and Z. Zheng, “Representa-
tion learning of graphs using graph convolutional multilayer
networks based on motifs,” Neurocomputing, vol. 464, pp.
218–226, 2021.

[63] G. Abuoda, G. D. F. Morales, and A. Aboulnaga, “Link
prediction via higher-order motif features,” in Proceed-
ings of Machine Learning and Knowledge Discovery in
Databases - European Conference (ECML) (PKDD), vol.
11906, Würzburg, Germany, Sep 16-20 2019, pp. 412–429.

[64] B. D. McKay and A. Piperno, “Practical graph isomorphism,
II,” J. Symb. Comput., vol. 60, pp. 94–112, 2014.

[65] P. Velickovic, “Theoretical foundations of graph neural net-
works,” CST Wednesday Seminar, Feb 2021.

[66] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R.
Salakhutdinov, and A. J. Smola, “Deep Sets,” in Advances
in Neural Information Processing Systems (NIPS), 2017, pp.
3391–3401.

[67] E. Wagstaff, F. Fuchs, M. Engelcke, I. Posner, and M. A.
Osborne, “On the limitations of representing functions on
sets,” in Proceedings of International Conference on Ma-
chine Learning (ICML), vol. 97, 2019, 9-15 June 2019, Long
Beach, California, USA, 2019, pp. 6487–6494.

[68] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invari-
ant and equivariant graph networks,” in International Con-
ference on Learning Representations (ICLR), New Orleans,
LA, USA, May 6-9, 2019.

[69] H. Maron, E. Fetaya, N. Segol, and Y. Lipman, “On the
universality of invariant networks,” in Proceedings of Inter-
national Conference on Machine Learning (ICML), vol. 97,
Long Beach, California, USA, June, 9-15 2019, pp. 4363–
4371.

[70] N. Keriven and G. Peyré, “Universal invariant and equivari-
ant graph neural networks,” in Advances in Neural Informa-
tion Processing Systems (NIPS), vol. 32, 2019.

[71] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Repre-
sentation Learning on Large Graphs,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 1024–
1034.

[72] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful
are Graph Neural Networks?” in the 7th International Con-
ference on Learning Representations (ICLR), USA, May 6-9
2019.

[73] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W.
Teh, “Set transformer: A framework for attention-based
permutation-invariant neural networks,” in Proceedings of
International Conference on Machine Learning (ICML),
vol. 97, Jun, 09-15 2019, pp. 3744–3753.

[74] H. Zhu, F. Feng, X. He, X. Wang, Y. Li, K. Zheng, and
Y. Zhang, “Bilinear graph neural network with neighbor in-
teractions,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, (IJCAI), 2020,
pp. 1452–1458.

[75] S. Verma and Z.-L. Zhang, “Graph Capsule Convolutional
Neural Networks,” arXiv, 2018.

[76] P. Meltzer, M. D. G. Mallea, and P. J. Bentley, “PiNet:
A Permutation Invariant Graph Neural Network for Graph
Classification,” CoRR, 2019.

[77] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von
Lilienfeld, “Fast and accurate modeling of molecular at-
omization energies with machine learning,” Physical Review
Letters, vol. 108, p. 058301, 2012.

[78] G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler,
A. Ziehe, A. Tkatchenko, A. Lilienfeld, and K.-R. Müller,
“Learning invariant representations of molecules for atom-
ization energy prediction,” in Advances in Neural Informa-
tion Processing Systems (NIPS), vol. 25, 2012.

[79] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph
convolutional networks with eigenpooling,” in Proceedings
of International Conference on Knowledge Discovery &
Data Mining, (KDD), Anchorage, AK, USA, August, 4-8
2019, pp. 723–731.

[80] K. Zhao, Y. Rong, J. X. Yu, J. Huang, and H. Zhang, “Graph
ordering: Towards the optimal by learning,” CoRR, 2020.

[81] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph
neural networks count substructures?” in Advances in Neural
Information Processing Systems (NeurIPS) 33, December 6-
12 2020.

[82] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein,
“Improving graph neural network expressivity via subgraph
isomorphism counting,” CoRR, 2020.

[83] D. Floros, N. Pitsianis, and X. Sun, “Fast graphlet transform
of sparse graphs,” in 2020 IEEE High Performance Extreme
Computing Conference, (HPEC), Waltham, MA, USA, Sep
22-24 2020, pp. 1–8.

[84] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,”
in Proceedings of International Conference on Machine
Learning, ICML, vol. 70, Sydney, NSW, Australia, August,
6-11 2017, pp. 1263–1272.

[85] V. Arvind, F. Fuhlbrück, J. Köbler, and O. Verbitsky, “On
Weisfeiler-Leman invariance: Subgraph counts and related
graph properties,” in Proceedings of Fundamentals of Com-
putation Theory (FCT), vol. 11651, Copenhagen, Denmark,
August 12-14 2019, pp. 111–125.

[86] R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro,
“Janossy pooling: Learning deep permutation-invariant func-
tions for variable-size inputs,” in International Conference
on Learning Representations (ICLR), New Orleans, LA,
USA, May, 6-9 2019.

[87] B. Bloem-Reddy and Y. W. Teh, “Probabilistic symmetries
and invariant neural networks,” J. Mach. Learn. Res., vol. 21,
pp. 90:1–90:61, 2020.

[88] R. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Re-
lational pooling for graph representations,” in Proceedings
of International Conference on Machine Learning (ICML),

42

Vol. 2022, No. 1, March

vol. 97, 09–15 Jun 2019, pp. 4663–4673.
[89] E. Cohen-Karlik, A. B. David, and A. Globerson, “Regular-

izing towards permutation invariance in recurrent models,” in
Advances in Neural Information Processing Systems (NIPS),
Dec, 6-12 2020.

[90] J. Moore and J. Neville, “Deep collective inference,” in
Proceedings of Conference on Artificial Intelligence (AAAI),
San Francisco, California, USA, Feb, 4-9 2017, pp. 2364–
2372.

Tuyen Ho Thi Thanh is a PhD student
in Computer Science at the University of
Science – Vietnam National University, Ho
Chi Minh City, Vietnam. She has been
teaching courses related to Computer Sci-
ence program since 2013. She is currently
a lecturer and a member of strong research
team at the School of Technology and De-

sign - University of Economics Ho Chi Minh City.
Email: tuyenhtt@ueh.edu.vn

43

