
Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Volume E-3, No.7 (11)

 45

Implementing the Secure Protocol for
Exchanging the Symmetric Key of FPGA-based

Embedded Systems

Tran Thanh1, Tran Hoang Vu1, Nguyen Van Cuong2, Pham Ngoc Nam1
1School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam.

Email:{thanh.tran, vu.tranhoang, nam.phamngoc}@hust.edu.vn
2 Faculty of Electronics and Telecommunications, Danang University of Science and Technology, Danang, Vietnam.

Email: nvcuong2000@gmail.com

Abstract - Cryptographic solution for protecting data
which pass through an insecure public network is
widely applied. To ensure the data confidentiality and
availability, the secret key must be exchanged securely
between parties before beginning a transaction session.
This paper presents a protocol to enhance the flexibility
and secrecy of symmetric key exchange over the
Internet. Our approach uses an asymmetric encryption
algorithm to protect symmetric encryption keys from
thefts and tampers over a transmission line. In addition,
this paper presents a protocol to ensure the integrity,
confidentiality of the symmetric key, and the freshness
of a transaction session. Experimental results from a
prototype system based on FPGA are also revealed.

Keywords – Security key, symmetric key, security
algorithm.

I. INTRODUCTION

Cryptography is the practice and study of
techniques for secure communication in the presence

of third parties. Cryptography prior to the modern age
was effectively synonymous with encryption, the

conversion of information from a readable state to
apparent nonsense. The main classical cipher types are

transposition and substitution ciphers. Modern
cryptography is heavily based on mathematical theory

and computer science practice. Cryptographic

algorithms are designed too hard to break in practice
for any attackers. Along with a key, they are used in

the encryption and decryption of data.

Cryptographic algorithms are classified into two
main groups, including symmetric encryption (also

called symmetric key encryption or secret key
encryption) and asymmetric encryption (also called

public key encryption), as shown in Fig. 1. When

using symmetric encryption algorithms, both parties

share the same key for encryption and decryption. To
provide privacy, this key needs to be kept

confidential. Once somebody else gets to know the
key, it is not safe any more. A few well-known

examples are: DES[1], Triple-DES[1], AES[2],
BlowFish[3]. On the other hand, asymmetric

encryption algorithms use pairs of keys, among
which, one is used for encryption and the other for

decryption. Typically, the decryption key is kept
secretly, therefore called “secret key” or “private
key”. Meanwhile, the encryption key is spread to all

who might want to send encrypted data, called “public
key”. The secret key cannot be reconstructed from the

public key. Well-known asymmetric key encryption
algorithms are RSA[4], DSA[5].

Figure 1. Overview of the type of cryptography

The security of the encrypted data (called

ciphertext) in modern cryptography depends on two
aspects: The strength of the encryption algorithm and

confidentiality of the key. More generally,
cryptographic algorithms have been standardized and

published. Therefore, the key is one of the important
elements of security processes that should be kept

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development and Application on Information and Communication Technology

 46

confidential. Using asymmetric algorithms, the secret

key must not be shared. Every user only needs to keep
one secret key in secrecy and a collection of public

keysthat can be published. With symmetric
algorithms, every pair of users would need to have an

own shared secret key. Finally, the only symmetric
key should be kept in confidentiality and has to be

shared or exchanged, as shown in Fig. 2.

Figure 2. Sharing key of the type of cryptography

Asymmetric algorithm seem to be ideally suitable
for real-world use: As the secret key does not have to

be shared, the risk of getting known is rather low than
symmetric algorithm. However, as presented in [6][7],

asymmetric algorithms are much slower than
symmetric ones. Therefore, secure communication

uses symmetric keys for bulk message encryption,
while asymmetric keys are used for symmetric key

exchange and digital signatures.

Exchanging symmetric keys in untrusted
environment would pose potential risks such as theft,

malicious, man-in-middle attacker, etc. Serveral

works have been carried out this issue. Santosh
Deshpande proposed a protocol for secure key

exchange[8]. His approach supports preventing Denial
of Service (DoS) attacks, but the freshness and

continuity of a transmission session have not
considered. Alternatively, Saar Drimer presented a

protocol for secure remote update of FPGA-based
system [9]. In that his work, he used KUL for MAC

calculation and data encryption, but he didn’t present
how the secure key to exchange between both the
sides.

Basing on the above considerations, this paper

presents a scheme combining the symmetric,
asymmetric and hash algorithms to ensure flexibility

and securely exchanging the secret keys over the
Internet. Our proposed protocol is improved from Saar

Drimer’s protocol for exchanging the secure key. In
this protocol, we describes the work including a

system designer, who buys IP cores from IP vendors
and a user, who updates his/her system from service

providers. Moreover, in our protocol, the parameters

for implementing the security of a partially
reconfigurable embedded system are defined and

added. The proposed protocol is referenced to Internet
Key Exchange protocol in [10],[11].

The rest of the paper is organized as follows.

Section II describes our proposed scheme. The
scheme is demonstrated by a prototype system based

on Xilinx Spartan-6 LX45 FPGA Atlys board in
Section III. Conclusions are drawn in Section IV.

II. THE PROPOSED SCHEME

A. Building the protocol

To implement the proposed scheme, we consider

exchanging the secure key of IP cores, which transfer
over the Internet between a System Integrator (SysInt)

and an IP Vendor (IPVend) or a SysInter and a User.
The parties and the implementation process are shown

in Fig. 3.

System Integrator (SysInt) designs the FPGA

system and provides it to the user. SysInt has physical
access to the product and can issue a product upgrade

in the field. A typical system consists of custom
elements and multiple third-party (IPVend) IP cores.

IP cores can be distributed in various formats: HDL
sources, netlists or FPGA device-specific partial

bitstreams, depending on the level of trust between
SysInt and IPVend.

IP Vendor (IPVend) provides reusable

components (IP cores), and related data sheet, or may
design an IP block to meet a provided subsystem

specification. IPVend is typically not directly
involved in the system level FPGA design process.

IPVend wishes to protect its own design secrets.

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Volume E-3, No.7 (11)

 47

Trusted Authority (TAut) is an authorization

and/or certification center. TAut confirms the key
generation process during initial system start-up and

certifies the resulting key material. TAut is assumed
to be trustworthy by all parties and not involved in the

system development process.

User is an end-customer who operates the system,
possibly in hostile environments. User requires the

system to be secure, but could also try to gain

personal profit by attempting to circumvent the
implemented security countermeasures.

In the proposed scheme, at each session,

participants must use the same authentication
algorithms (e.g., SHA-512), symmetric encryption

algorithms (e.g., AES-256) and asymmetric
encryption algorithms (e.g., RSA). Parameters in the

proposed protocols have been stored in the profile
database of SysInt, IPVend, TAut and User side, and

are listed below.

NSys: Nonce generated by SysInt

SKS: SysInt’s Symmetric Key

SSKS: SysInt’s Session Symmetric Key

PKV: IPVend’s Public Key

SKV: IPVend’s Secret (Private) Key

PKU: User’s Public Key

SID: SysInt Identifier

VID: IPVend Identifier

TAID: TAut Identifier

UID: User Identifier

Mx, Mx’: HMAC values

1) Keys are authenticated by the TAut

This is the highest safety level of exchanging keys.

The keys of parties are always authenticated by the
Trusted Authority before making the transaction. The

details will be described in the following steps:

 Beginning a transaction session, SysInt generates
a number only use once NSys. The NSys, SID, VID

and “ReqIP” will be sent to IPVend.

 IPVend receives and verifies parameters. If these
parameters are available, IPVend will send the

public key PKV to SysInt.

Figure 3. Protocol of the secure key exchange:
(a) Keys are authenticated; (b),(c) Keys are not

authenticated

 SysInt receives and sends the PKV with IPVend
ID to the TAut to authenticate. If the PKV is true,
SysInt will use this key to encrypt SKS, and then

send the encrypted SKS to IPVend.

 In turn, IPVend sends the encrypted SKS with
SysInt ID to Taut to authenticate.

 TAut uses IPVend’s PKV to encrypt SysInt’s SKS
stored in a database. If this result is same the

encrypted SKS which have been received from

IPVend, TAut will send a “ConfirmSKS”
command to IPVend in true.

 IPVend uses an own private key SKV to decrypt
the encrypted SKS, and then uses the SKS to

encrypt IP core and transfers encryptedIP to
SysInt.

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development and Application on Information and Communication Technology

 48

At each session, both the PKV and SKS are always

exchanged and authenticated. The SKV did not
exchange. The PKV does not need to be kept secret.

Only the SKS needs to be kept in confidentiality ; and
it had been encrypted by the PKV before passing

through the Internet as mentioned above Fig. 3(a).
Algorithms of the secure key exchange are described

in more detail in the pseudo code form, and shown as
follows.

Algorithm A1: System Integrator
S1. Generate(NSys)

S2. M0 = HMAC(“ReqIP”, SID, VID, NSys)
S3. Send(“ReqIP”, SID, VID, NSys, M0)

S4. Receive(“ReqSKS”, PKV, M1)
S5. M1’ = HMAC(“ReqSKS”, PKV, M0)

S6. If M1’ ≠ M1 then goto S1
S7. M2 = HMAC(“VerifyPKV”, SID, VID, TAID, PKV,

M1)
S8. Send(“VerifyPKV”, SID, VID, TAID, PKV, M1, M2)

S9. Receive(“ConfirmPKV”, M3)
S10. M3’ = HMAC(“ConfirmPKV”, M2)

S11. If (“ConfirmPKV ” ≠ PKV_OK) or M3’ ≠ M3
then goto S1

S12. M4 = HMAC(EncryptedSKS, M1)
S13. Send(EncryptedSKS, M4)

S14. Receive(EncryptedIP, M7)

Algorithm A2: IP Vendor
V1. Receive(“ReqIP”, SID, VID, NSys, M0)
V2. M0’ = HMAC(“ReqIP”, SID, VID, NSys)

V3. If M0’ ≠ M0 then goto V1
V4. M1 = HMAC(“ReqSKS”, PKV, M0)

V5. Send(“ReqSKS”, PKV, M1)
V6. Receive(EncryptedSKS, M4)

V7. M4’ = HMAC(EncryptedSKS, M1)
V8. If M4’ ≠ M4 then goto V1
V9. M5 = HMAC(“VerifySKS”, EncryptedSKS, M4)

V10. Send(“VerifySKS”, EncryptedSKS, SID, VID, PKV,
M4, M5)

V11. Receive(“ConfirmSKS”, M6)
V12. M6’ = HMAC(“ConfirmSKS”, M5)

V13. If (“ConfirmSKS ” ≠ SKS_OK) or M6’ ≠ M6 then

goto V1
V14. M7 = HMAC(EncryptedIP, M6)
V15. Send(EncryptedIP, M7)

Algorithm A3: Trusted Authority
T1. Receive(“VerifyPKV”, SID, VID, TAID, PKV, M1,

M2)

T2. M2’ = HMAC(“VerifyPKV”, SID, VID, TAID, PKV,
M1)

T3. If M2’ ≠ M2 then goto T1
T4. M3 = HMAC(“ConfirmPKV”, M2)

T5. Send(“ConfirmPKV”, M3)
T6. Receive(“VerifySKS”, EncryptSKS, SID, VID,

PKV, M4, M5)

T7. M5’ = HMAC(“VerifySKS”, EncryptedSKS, M4)
T8. If M5’ ≠ M5 then goto T1

T9. M6 = HMAC(“ConfirmSKS”, M5)
T10. Send(“ConfirmSKS”, M6)

2) Keys are authenticated by the TAut

When the parties can trust each other, the key
exchange does not need to be authenticated through

TAut. However, to prevent risks, session symmetric
key (herein called session key) is proposed for use.

The session key is a different symmetric key that can
be used for each exchange between partners. These

keys are generated for each transaction to remove the
requirement for maintenance of symmetric keys.

Invalidation of compromised or expired symmetric
keys is no longer a problem. Each session key is used

once only with one message.

The algorithms of the secure key exchange
between SysInt and IPVend or User are described as

below, in which, the NSys and HMACs for the
freshness and continuity of a transmission session is

similar to case of having the above authentication.
The session key SSKS is generated by SysInt. SysInt

uses the PKV to encrypt this key, and exchanges to
IPVend.

 The algorithms of secure key exchange between

SysInt and IPVend (Fig. 3(b)):

Algorithm B1: System Integrator
S1. Generate(NSys)

S2. M0 = HMAC(“ReqIP”, SID, VID, NSys)
S3. Send(“ReqIP”, SID, VID, NSys, M0)

S4. Receive(“ReqSSKS”, PKV, M1)
S5. M1’ = HMAC(“ReqSSKS”, PKV, M0)

S6. If M1’ ≠ M1 then goto S1

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Volume E-3, No.7 (11)

 49

S7. M2 = HMAC(EncryptedSSKS, M1)

S8. Send(EncryptedSSKS, M2)
S9. Receive(EncryptedIP, M3)

Algorithm B2: IP Vendor
V1. Receive(“ReqIP”, SID, VID, NSys, M0)

V2. M0’ = HMAC(“ReqIP”, SID, VID, NSys)
V3. If M0’ ≠ M0 then goto V1

V4. M1 = HMAC(“ReqSSKS”, PKV, M0)
V5. Send(“ReqSSKS”, PKV, M1)

V6. Receive(EncryptedSSKS, M2)

V7. M2’ = HMAC(EncryptedSSKS, M1)
V8. If M2’ ≠ M2 then goto V1

V9. M3 = HMAC(EncryptedIP, M2)
V10. Send(EncryptedIP, M3)

 The algorithms of secure key exchange between
SysInt and User (Fig. 3(c)):

Algorithm C1: System Integrator
S1. Generate(NSys)

S2. M0 = HMAC(“GetUpdate”, SID, UID, NSys)
S3. Send(“GetUpdate”, SID, UID, NSys, M0)

S4. Receive(“ReqSSKS”, PKU, M1)
S5. M1’ = HMAC(“ReqSSKS”, PKU, M0)

S6. If M1’ ≠ M1 then goto S1
S7. M2 = HMAC(EncryptedSSKS, M1)

S8. Send(EncryptedSSKS, EncryptedIP, M2)

Algorithm C2: User
U1. Receive(“GetUpdate”, SID, UID, NSys, M0)

U2. M0’ = HMAC(“GetUpdate”, UID, UID, NSys)
U3. If M0’ ≠ M0 then goto U1

U4. M1 = HMAC(“ReqSSKS”, PKU, M0)
U5. Send(“ReqSSKS”, PKU, M1)

U6. Receive(EncryptedSSKS, M2)
U7. M2’ = HMAC(EncryptedSSKS, EncryptedIP, M1)

U8. If M2’ ≠ M2 then goto U1
U9. Receive (EncryptedIP)

B. Security analysis

The nonce NSys is generated by SysInt must be an

unpredictable random number and also has no
opportunity to repeat. This prevents attackers from

replaying the data of the previous session. The NSys
should be large enough to make the creation of a

dictionary of responses that can be replayed
impractically. S. Drimer et.al.[9] suggested that the

use of an uniform distributed 64-bit word for NSys will

ensure that an attacker who wants to perform 103
queries per second must spend a lot of time up to

many decades to find its matching value.

HMAC values (M0, M0’, M1, M2’, etc.) are
generated by the SHA-512 algorithm with 512-bit

length. The HMACs provide brute-force upload
attempts with an equal generous safe margin. The

parameters of algorithms are used to calculate the

HMAC known as M0. Then M0 is used again as a
parameter to calculate the HMAC named as M1. The

process repeats several times until the end of the
session. The HMACs are applied throughout the

update process to prevent man-in-the-middle attackers
to replay old bitstream or malicious code.

RSA asymmetric algorithm is used to protect

symmetric key. RSA public keys are generated by
multiplying large prime numbers together and are

derived from factoring the product of the two these
numbers. Deriving the private key from the known

public key is very difficult. If prime numbers are
given large enough, it is impossible to derive a private

key from a public key. Moreover, the private key is
not exchanged over the Internet, so leaked key risk is

less probable, which means the symmetric key is
always safely protected.

Measuring security of the RSA have presented in

[12], Kefa Rabah shows that factoring the 129-digital
number (426 bits) in 1994 required 5000 MIPS-year

(MIPS means the million instructions per second; and
one MIPS-year is equal to the number of instructions

executed during one year of computing at one million
instructions per second). It also used idle time on 1600

computers around the world over an eight-month
period. When using RSA encryption algorithm to
encrypt symmetric keys, the support of 512 bits to

1024 bits variable key length is required Besides, to
protect very high value transactions - at least a 1024

bits or higher key should be used.

III. IMPLEMENTATION AND RESULTS

A. System setup

To test the proposed scheme, we have built a

prototype system as in Fig. 4, consisting of a

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development and Application on Information and Communication Technology

 50

reconfigurable embedded platform based on Xilinx

Spartan-6 LX45 FPGA Atlys board which plays the
role of IPVend or User and a laptop plays the role of

SysInt. The FPGA Atlys board and the laptop are
connected via a TCP/IP protocol.

Figure 4. Protocol of the secure key exchange

On the Xilinx Spartan-6 SC6SLX45 chip, we
embedded a MicroBlaze soft-core microprocessor

using the Xilinx Embedded Development Kit (EDK)

ver. 14.1 software. EDK toolset allows designers to
easily create platforms based on either MicroBlaze.

EDK offers a variety of peripherals (UARTs, counter,
Ethernet, memory controller, general-purpose I/O and

so on) and a one-connection solution based on the
structure of the IBM CoreConnect bus [13].

As analyzed and presented above, the protocol of

secure key exchange using two SHA-512 and RSA
algorithms. In particular, the SHA-512 algorithm is

used to authenticate transaction sessions, secret keys
and bulk messages (e.g., IP cores). Therefore, it can

be built in hardware to speed up calculations or
software to install and change flexibility. The RSA

algorithm is only used for exchanging the symmetric
key, so we recommend that it should be built in

software to reduce the hardware resources cost of the
system.

For software implementation, we used the open

source code for RSA and SHA-512 and ported them
on MicroBlaze with some modifications. However,

the code had not been optimized yet. It will be a

subject for future works.

In order to compare and analyze the efficiency of
the systems, we implemented the RSA algorithm in

embedded software running on MicroBlaze and SHA-

512 algorithm in hardware. Results are shown in

Table I, II.

B. Results and evaluation

We assumed that it is necessary to encrypt and

decrypt for exchanging 256bit key length of AES-256
symmetric encryption algorithm, which means
encoding and exchanging 32bytes capacity of data.

Table I shows the costs of resource, and the measured
execution time of the RSA encryptor at SysInt and

RSA decryptor at IPVend, by using the pairs of public
key (N = 517, e = 3) and private key (N = 517, d =

307).

Table I. Implementation results of the RSA algorithm

RSA Core LOC in C
Size in

memory
(KB)

Execution
time

RSA_Decrypt 74 1.89 KB 0,9 s

RSA_Encrypt 72 1.83 KB 0,01 s

Table II shows the costs of resource and the
throughput of the SHA-512 algorithm in both

hardware and embedded software. As it can be seen in
Table II, the throughput of software solution is two

times slower than that of the hardware solution.

Table II. Resoures use of the SHA-512 algorithm

SHA-512
Core

Size in
memory

Hardware Utilization
(Used / Available)

Through-
put

Hardware -
Slices:
LUTs:

852/54576
2052/27288

30Mbps

Software 138 KB - 15.2Mbps

The flexibility of the proposed scheme is the
ability to combine both the RSA and SHA-512

algorithms in software or RSA algorithm in software

and SHA-512 algorithm in hardware, which depends
on the system resource and the specific application.

IV. CONCLUSIONS

The proposed method of security key exchange has
combined 3 factors: a number only used once, the

public encryption algorithm and hash function. This
ensures the integrity and confidentiality of secret key

passing through untrusted network as well as the
originality and availability of keys for parties, and the
freshness and continuity of transmission sessions.

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Volume E-3, No.7 (11)

 51

In addition, based on the proposed method, system

designers can implement algorithms in hardware or
software flexibility. Future work will be optimizeing

the performance of the algorithms that is implemented
on FPGA-based reconfigurable embedded systems.

REFERENCES
[1] NIST., “FIPS 46-3: Data Encryption Standard (DES),”

2009.

[2] NIST., “FIPS 197: Advanced Encryption Standard (AES),”
2001.

[3] B. Schneier, “Description of a new variable-length key, 64-
bit block cipher (Blowfish),” in Fast Software Encryption
SE - 24, R. Anderson, Ed. Springer Berlin Heidelberg, 1994,
pp. 191–204.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[5] NIST., “FIPS 186-3: Digital Signature Standard (DSS),”
2009.

[6] Y. Kumar, R. Munjal, and H. Sharma, “Comparison of
Symmetric and Asymmetric Cryptography with Existing
Vulnerabilities and Countermeasures,” Int. J. Comput. Sci.
Manag. Stud., vol. 11, no. 03, pp. 60–63, 2011.

[7] H. W. H. Wang, B. S. B. Sheng, C. C. Tan, and Q. L. Q. Li,
“Comparing Symmetric-key and Public-key Based Security
Schemes in Sensor Networks: A Case Study of User Access
Control,” in 2008 The 28th International Conference on
Distributed Computing Systems, 2008.

[8] S. Deshpande, “Symmetric Key Management: A new
approach,” Int. J. Eng. Comput. Sci., vol. 1, no. 3, pp. 125–
136, 2012.

[9] S. Drimer, “A protocol for secure remote updates of FPGA
configurations,” Lect. Notes Comput. Sci., vol. 5453, pp. 50–
61, 2009.

[10] A. Steffen, “Secure Communications in Embedded
Systems,” CRC Ind. Inf. Technol. Handb., pp. 1–15, 2004.

[11] D. R. Kuhn, V. C. Hu, W. T. Polk, and C. Shu-Jen, “SP 800-
32: Introduction to Public Key Technology and the Federal
PKI Infrastructure,” National Institute of Standards and
Technology, no. February, pp. 1–54, 2001.

[12] R. Kefa, “Implementing Secure RSA Cryptosystens Using
Your Own Cryptographic JCE Provider,” J. Aplpied Sci.,
vol. 6, no. 3, pp. 482–510, 2006.

[13] Xilinx, “UG081: Microblaze processor reference guide
(Ver9.0),” Xilinx, Inc., vol. 081, 2006.

AUTHORS' BIOGRAPHIES

Tran Thanh is a Ph.D. student in
Electrical Engineering in ESRC
laboratory of Hanoi University of
Science and Technology (Vietnam),
where he has been since 2010. He has
a B. Eng. degree in Electronics and
Telecommunications from Danang
University of Technology and a
M.Sc. degree from the University of
Danang in 1995 and 2007,

respectively. He works at The Vietnam Research Institute
of Electronics, Informatics and Automation. His research is

in reconfigurable computing, reconfigurable embedded
systems and FPGA security.

Tran Hoang Vu received B. Eng.
degree in Electronics and
Telecommunications from Da Nang
University of Technology and M.Sc.
degree from the University of
Danang (Vietnam) in 2004 and
2007, respectively. From 2004 until
now he has been working at Danang
College of Technology-The
University of Danang, Vietnam. His
research interests include Reducing

power consumption of Data Center Networks,
reconfigurable embedded systems and low-power
embedded system design.

Nguyen Van Cuong received B. Sc.
degree In Solid State Electronics from
Hue University of Science (Vietnam)
in 1987. He was awarded a Ph.D.
degree in Electrical Engineering from
Uni. BW Munich, Germany in 2000.
From 2000 until now he has been
working at Danang University of
Science and Technology, Vietnam.
His main disciplinary focus is on

embedded systems and energy–aware VLSI system design.

Pham Ngoc Nam received B. Eng.
degree In electronics and
Telecommunications from Hanoi
University of Science and
Technology (Vietnam) and M.Sc.
degree in Artificial Intelligence
from K.U. Leuven (Belgium) in
1997 and 1999, respectively. He
was awarded a Ph.D. degree in
Electrical Engineering from

K.U.Leuven in 2004. From 2004 until now he has been
working at Hanoi University of Science and Technology,
Vietnam. His research interests include reconfigurable
embedded systems and low-power embedded system
design.

