
Bả
n q

uy
ền

 th
uộ

c  

Tạ
p c

hí 
CNTT&TT Volume E-3, No.7 (11) 

 

 45

Implementing the Secure Protocol for 
Exchanging the Symmetric Key of FPGA-based 

Embedded Systems  

Tran Thanh1, Tran Hoang Vu1, Nguyen Van Cuong2, Pham Ngoc Nam1 
1School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam. 

Email:{thanh.tran, vu.tranhoang, nam.phamngoc}@hust.edu.vn 
2 Faculty of Electronics and Telecommunications, Danang University of Science and Technology, Danang, Vietnam. 

Email: nvcuong2000@gmail.com 

 
Abstract - Cryptographic solution for protecting data 
which pass through an insecure public network is 
widely applied. To ensure the data confidentiality and 
availability, the secret key must be exchanged securely 
between parties before beginning a transaction session. 
This paper presents a protocol to enhance the flexibility 
and secrecy of symmetric key exchange over the 
Internet. Our approach uses an asymmetric encryption 
algorithm to protect symmetric encryption keys from 
thefts and tampers over a transmission line. In addition, 
this paper presents a protocol to ensure the integrity, 
confidentiality of the symmetric key, and the freshness 
of a transaction session. Experimental results from a 
prototype system based on FPGA are also revealed.  

Keywords – Security key, symmetric key, security 
algorithm. 

I. INTRODUCTION 

Cryptography is the practice and study of 
techniques for secure communication in the presence 

of third parties. Cryptography prior to the modern age 
was effectively synonymous with encryption, the 

conversion of information from a readable state to 
apparent nonsense. The main classical cipher types are 

transposition and substitution ciphers. Modern 
cryptography is heavily based on mathematical theory 

and computer science practice. Cryptographic 

algorithms are designed too hard to break in practice 
for any attackers. Along with a key, they are used in 

the encryption and decryption of data. 

Cryptographic algorithms are classified into two 
main groups, including symmetric encryption (also 

called symmetric key encryption or secret key 
encryption) and asymmetric encryption (also called 

public key encryption), as shown in Fig. 1. When 

using symmetric encryption algorithms, both parties 

share the same key for encryption and decryption. To 
provide privacy, this key needs to be kept 

confidential. Once somebody else gets to know the 
key, it is not safe any more. A few well-known 

examples are: DES[1], Triple-DES[1], AES[2], 
BlowFish[3]. On the other hand, asymmetric 

encryption algorithms use pairs of keys, among 
which, one is used for encryption and the other for 

decryption. Typically, the decryption key is kept 
secretly, therefore called “secret key” or “private 
key”. Meanwhile, the encryption key is spread to all 

who might want to send encrypted data, called “public 
key”. The secret key cannot be reconstructed from the 

public key. Well-known asymmetric key encryption 
algorithms are RSA[4], DSA[5].  

 

Figure 1. Overview of the type of cryptography 

The security of the encrypted data (called 

ciphertext) in modern cryptography depends on two 
aspects: The strength of the encryption algorithm and 

confidentiality of the key. More generally, 
cryptographic algorithms have been standardized and 

published. Therefore, the key is one of the important 
elements of security processes that should be kept 
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confidential. Using asymmetric algorithms, the secret 

key must not be shared. Every user only needs to keep 
one secret key in secrecy and a collection of public 

keysthat can be published. With symmetric 
algorithms, every pair of users would need to have an 

own shared secret key. Finally, the only symmetric 
key should be kept in confidentiality and has to be 

shared or exchanged, as shown in Fig. 2. 

 

Figure 2. Sharing key of the type of cryptography 

Asymmetric algorithm seem to be ideally suitable 
for real-world use: As the secret key does not have to 

be shared, the risk of getting known is rather low than 
symmetric algorithm. However, as presented in [6][7], 

asymmetric algorithms are much slower than 
symmetric ones. Therefore, secure communication 

uses symmetric keys for bulk message encryption, 
while asymmetric keys are used for symmetric key 

exchange and digital signatures. 

Exchanging symmetric keys in untrusted 
environment would pose potential risks such as theft, 

malicious, man-in-middle attacker, etc. Serveral 

works have been carried out this issue. Santosh 
Deshpande proposed a protocol for secure key 

exchange[8]. His approach supports preventing Denial 
of Service (DoS) attacks, but the freshness and 

continuity of a transmission session have not 
considered. Alternatively, Saar Drimer presented a 

protocol for secure remote update of FPGA-based 
system [9]. In that his work, he used KUL for MAC 

calculation and data encryption, but he didn’t present 
how the secure key to exchange between both the 
sides. 

Basing on the above considerations, this paper 

presents a scheme combining the symmetric, 
asymmetric and hash algorithms to ensure flexibility 

and securely exchanging the secret keys over the 
Internet. Our proposed protocol is improved from Saar 

Drimer’s protocol for exchanging the secure key. In 
this protocol, we describes the work including a 

system designer, who buys IP cores from IP vendors 
and a user, who updates his/her system from service 

providers. Moreover, in our protocol, the parameters 

for implementing the security of a partially 
reconfigurable embedded system are defined and 

added. The proposed protocol is referenced to Internet 
Key Exchange protocol in [10],[11]. 

The rest of the paper is organized as follows. 

Section II describes our proposed scheme. The 
scheme is demonstrated by a prototype system based 

on Xilinx Spartan-6 LX45 FPGA Atlys board in 
Section III. Conclusions are drawn in Section IV. 

II. THE PROPOSED SCHEME 

A.  Building the protocol 

To implement the proposed scheme, we consider 

exchanging the secure key of IP cores, which transfer 
over the Internet between a System Integrator (SysInt) 

and an IP Vendor (IPVend) or a SysInter and a User. 
The parties and the implementation process are shown 

in Fig. 3. 

System Integrator (SysInt) designs the FPGA 

system and provides it to the user. SysInt has physical 
access to the product and can issue a product upgrade 

in the field. A typical system consists of custom 
elements and multiple third-party (IPVend) IP cores. 

IP cores can be distributed in various formats: HDL 
sources, netlists or FPGA device-specific partial 

bitstreams, depending on the level of trust between 
SysInt and IPVend. 

IP Vendor (IPVend) provides reusable 

components (IP cores), and related data sheet, or may 
design an IP block to meet a provided subsystem 

specification. IPVend is typically not directly 
involved in the system level FPGA design process. 

IPVend wishes to protect its own design secrets. 
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Trusted Authority (TAut) is an authorization 

and/or certification center. TAut confirms the key 
generation process during initial system start-up and 

certifies the resulting key material. TAut is assumed 
to be trustworthy by all parties and not involved in the 

system development process. 

User is an end-customer who operates the system, 
possibly in hostile environments. User requires the 

system to be secure, but could also try to gain 

personal profit by attempting to circumvent the 
implemented security countermeasures. 

In the proposed scheme, at each session, 

participants must use the same authentication 
algorithms (e.g., SHA-512),  symmetric encryption 

algorithms (e.g., AES-256) and asymmetric 
encryption algorithms (e.g., RSA). Parameters in the 

proposed protocols have been stored in the profile 
database of SysInt, IPVend, TAut  and User side, and 

are listed below. 

NSys: Nonce generated by SysInt 

SKS:  SysInt’s Symmetric Key 

SSKS:  SysInt’s Session Symmetric Key 

PKV:  IPVend’s Public Key 

SKV:  IPVend’s Secret (Private) Key 

PKU:  User’s Public Key 

SID: SysInt Identifier 

VID: IPVend Identifier 

TAID: TAut Identifier 

UID: User Identifier 

Mx, Mx’:    HMAC values 

 

1) Keys are authenticated by the TAut 

This is the highest safety level of exchanging keys. 

The keys of parties are always authenticated by the 
Trusted Authority before making the transaction. The 

details will be described in  the  following  steps: 

 Beginning a transaction session, SysInt generates 
a number only use once NSys. The NSys, SID, VID 

and “ReqIP” will be sent to IPVend. 

 IPVend receives and verifies parameters. If these 
parameters are available, IPVend will send the 

public key PKV to SysInt. 

 

Figure 3. Protocol of the secure key exchange:        
(a) Keys are authenticated; (b),(c) Keys are not 

authenticated 

 SysInt receives and sends the PKV with IPVend 
ID to the TAut to authenticate. If the PKV is true, 
SysInt will use this key to encrypt SKS, and then 

send the encrypted SKS to IPVend.  

 In turn, IPVend sends the encrypted SKS with 
SysInt ID to Taut to authenticate.  

 TAut uses IPVend’s PKV  to encrypt SysInt’s SKS 
stored in a database. If this result is same the 

encrypted SKS which have been received from 

IPVend, TAut will send a “ConfirmSKS” 
command to IPVend in true. 

 IPVend uses an own private key SKV to decrypt 
the encrypted SKS, and then uses the SKS to 

encrypt IP core and transfers encryptedIP to 
SysInt. 
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At each session, both the PKV and SKS are always 

exchanged and authenticated. The SKV  did not 
exchange. The PKV does not need to be kept secret. 

Only the SKS needs to be kept in confidentiality ; and 
it had been encrypted by the PKV before passing 

through the Internet as mentioned above Fig. 3(a). 
Algorithms of the secure key exchange are described 

in more detail in the pseudo code form, and shown as 
follows. 

Algorithm A1: System Integrator 
S1. Generate(NSys) 

S2. M0 = HMAC(“ReqIP”, SID, VID, NSys) 
S3. Send(“ReqIP”, SID, VID, NSys, M0) 

S4. Receive(“ReqSKS”, PKV, M1) 
S5. M1’ = HMAC(“ReqSKS”, PKV, M0) 

S6. If M1’ ≠ M1 then goto S1 
S7. M2 = HMAC(“VerifyPKV”, SID, VID, TAID, PKV, 

M1) 
S8. Send(“VerifyPKV”, SID, VID, TAID, PKV, M1, M2) 

S9. Receive(“ConfirmPKV”, M3) 
S10. M3’ = HMAC(“ConfirmPKV”, M2) 

S11. If (“ConfirmPKV ” ≠ PKV_OK) or M3’ ≠ M3 
then goto S1 

S12. M4 = HMAC(EncryptedSKS, M1) 
S13. Send(EncryptedSKS, M4) 

S14. Receive(EncryptedIP, M7) 

Algorithm A2: IP Vendor 
V1. Receive(“ReqIP”, SID, VID, NSys, M0) 
V2. M0’ = HMAC(“ReqIP”, SID, VID, NSys) 

V3. If M0’ ≠ M0 then goto V1 
V4. M1 = HMAC(“ReqSKS”, PKV, M0) 

V5. Send(“ReqSKS”, PKV, M1) 
V6. Receive(EncryptedSKS, M4) 

V7. M4’ = HMAC(EncryptedSKS, M1) 
V8. If M4’ ≠ M4 then goto V1 
V9. M5 = HMAC(“VerifySKS”, EncryptedSKS, M4) 

V10. Send(“VerifySKS”, EncryptedSKS, SID, VID, PKV, 
M4, M5) 

V11. Receive(“ConfirmSKS”, M6) 
V12. M6’ = HMAC(“ConfirmSKS”, M5) 

V13. If (“ConfirmSKS ” ≠ SKS_OK) or M6’ ≠ M6 then 

goto V1 
V14. M7 = HMAC(EncryptedIP, M6) 
V15. Send(EncryptedIP, M7) 

Algorithm A3: Trusted Authority 
T1. Receive(“VerifyPKV”, SID, VID, TAID, PKV, M1, 

M2) 

T2. M2’ = HMAC(“VerifyPKV”, SID, VID, TAID, PKV, 
M1) 

T3. If M2’ ≠ M2 then goto T1 
T4. M3 = HMAC(“ConfirmPKV”, M2) 

T5. Send(“ConfirmPKV”, M3) 
T6. Receive(“VerifySKS”, EncryptSKS, SID, VID, 

PKV, M4, M5) 

T7. M5’ = HMAC(“VerifySKS”, EncryptedSKS, M4) 
T8. If M5’ ≠ M5 then goto T1 

T9. M6 = HMAC(“ConfirmSKS”, M5) 
T10. Send(“ConfirmSKS”, M6) 

2) Keys are authenticated by the TAut 

When the parties can trust each other, the key 
exchange does not need to be authenticated through 

TAut. However, to prevent risks, session symmetric 
key (herein called session key) is proposed for use. 

The session key is a different symmetric key that can 
be used for each exchange between partners. These 

keys are generated for each transaction to remove the 
requirement for maintenance of symmetric keys. 

Invalidation of compromised or expired symmetric 
keys is no longer a problem. Each session key is used 

once only with one message. 

The algorithms of the secure key exchange 
between SysInt and IPVend or User are described as 

below, in which, the NSys and HMACs for the 
freshness and continuity of a transmission session is 

similar to case of having the above authentication. 
The session key SSKS is generated by SysInt. SysInt 

uses the PKV to encrypt this key, and exchanges to 
IPVend.  

 The algorithms of secure key exchange between 

SysInt and IPVend (Fig. 3(b)): 

Algorithm B1: System Integrator 
S1. Generate(NSys) 

S2. M0 = HMAC(“ReqIP”, SID, VID, NSys) 
S3. Send(“ReqIP”, SID, VID, NSys, M0) 

S4. Receive(“ReqSSKS”, PKV, M1) 
S5. M1’ = HMAC(“ReqSSKS”, PKV, M0) 

S6. If M1’ ≠ M1 then goto S1 
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S7. M2 = HMAC(EncryptedSSKS, M1) 

S8. Send(EncryptedSSKS, M2) 
S9. Receive(EncryptedIP, M3) 

Algorithm B2: IP Vendor 
V1. Receive(“ReqIP”, SID, VID, NSys, M0) 

V2. M0’ = HMAC(“ReqIP”, SID, VID, NSys) 
V3. If M0’ ≠ M0 then goto V1 

V4. M1 = HMAC(“ReqSSKS”, PKV, M0) 
V5. Send(“ReqSSKS”, PKV, M1) 

V6. Receive(EncryptedSSKS, M2) 

V7. M2’ = HMAC(EncryptedSSKS, M1) 
V8. If M2’ ≠ M2 then goto V1 

V9. M3 = HMAC(EncryptedIP, M2) 
V10. Send(EncryptedIP, M3) 

 The algorithms of secure key exchange between 
SysInt and User (Fig. 3(c)): 

Algorithm C1: System Integrator 
S1. Generate(NSys) 

S2. M0 = HMAC(“GetUpdate”, SID, UID, NSys) 
S3. Send(“GetUpdate”, SID, UID, NSys, M0) 

S4. Receive(“ReqSSKS”, PKU, M1) 
S5. M1’ = HMAC(“ReqSSKS”, PKU, M0) 

S6. If M1’ ≠ M1 then goto S1 
S7. M2 = HMAC(EncryptedSSKS, M1) 

S8. Send(EncryptedSSKS, EncryptedIP, M2) 

Algorithm C2: User 
U1. Receive(“GetUpdate”, SID, UID, NSys, M0) 

U2. M0’ = HMAC(“GetUpdate”, UID, UID, NSys) 
U3. If M0’ ≠ M0 then goto U1 

U4. M1 = HMAC(“ReqSSKS”, PKU, M0) 
U5. Send(“ReqSSKS”, PKU, M1) 

U6. Receive(EncryptedSSKS, M2) 
U7. M2’ = HMAC(EncryptedSSKS, EncryptedIP, M1) 

U8. If M2’ ≠ M2 then goto U1 
U9. Receive (EncryptedIP) 

B.  Security analysis 

The nonce NSys is generated by SysInt must be an 

unpredictable random number and also has no 
opportunity to repeat. This prevents attackers from 

replaying the data of the previous session. The NSys 
should be large enough to make the creation of a 

dictionary of responses that can be replayed 
impractically. S. Drimer et.al.[9] suggested that the 

use of an uniform distributed 64-bit word for NSys will 

ensure that an attacker who wants to perform 103 
queries per second must spend a lot of time up to 

many decades to find its matching value. 

HMAC values (M0, M0’, M1, M2’, etc.) are 
generated by the SHA-512 algorithm with 512-bit 

length. The HMACs provide brute-force upload 
attempts with an equal generous safe margin. The 

parameters of algorithms are used to calculate the 

HMAC known as M0. Then M0 is used again as a 
parameter to calculate the HMAC named as M1. The 

process repeats several times until the end of the 
session. The HMACs are applied throughout the 

update process to prevent man-in-the-middle attackers 
to replay old bitstream or malicious code.  

RSA asymmetric algorithm is used to protect 

symmetric key. RSA public keys are generated by 
multiplying large prime numbers together and are 

derived from factoring the product of the two these 
numbers. Deriving the private key from the known 

public key is very difficult. If prime numbers are 
given large enough, it is impossible to derive a private 

key from a public key. Moreover, the private key is 
not exchanged over the Internet, so leaked key risk is 

less probable, which  means the symmetric key is 
always safely protected. 

Measuring security of the RSA have presented in 

[12], Kefa Rabah shows that factoring the 129-digital 
number (426 bits) in 1994 required 5000 MIPS-year 

(MIPS means the million instructions per second; and 
one MIPS-year is equal to the number of instructions 

executed during one year of computing at one million 
instructions per second). It also used idle time on 1600 

computers around  the world over an eight-month 
period. When using RSA encryption algorithm to 
encrypt symmetric keys, the support of 512 bits to 

1024 bits variable key length is required Besides, to 
protect very high value transactions - at least a 1024 

bits or higher key should be used. 

III. IMPLEMENTATION AND RESULTS 

A. System setup 

To test the proposed scheme, we have built a 

prototype system as in Fig. 4, consisting of a 
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reconfigurable embedded platform based on Xilinx 

Spartan-6 LX45 FPGA Atlys board which plays the 
role of IPVend or User and a laptop plays the role of 

SysInt. The FPGA Atlys board and the laptop are 
connected via a TCP/IP protocol.  

 

Figure 4. Protocol of the secure key exchange 

On the Xilinx Spartan-6 SC6SLX45 chip, we 
embedded a MicroBlaze soft-core microprocessor 

using the Xilinx Embedded Development Kit (EDK) 

ver. 14.1 software.  EDK toolset allows designers to 
easily create platforms based on either MicroBlaze. 

EDK offers a variety of peripherals (UARTs, counter, 
Ethernet, memory controller, general-purpose I/O and 

so on) and a one-connection solution based on the 
structure of the IBM CoreConnect bus [13]. 

As analyzed and presented above, the protocol of 

secure key exchange using two SHA-512 and RSA 
algorithms. In particular, the SHA-512 algorithm is 

used to authenticate transaction sessions, secret keys 
and bulk messages (e.g., IP cores). Therefore, it can 

be built in hardware to speed up calculations or 
software to install and change flexibility. The RSA 

algorithm is only used for exchanging the symmetric 
key, so we recommend that it should be built in 

software to reduce the hardware resources cost of the 
system. 

For software implementation, we used the open 

source code for RSA and SHA-512 and ported them 
on MicroBlaze with some modifications. However, 

the code had not been optimized yet. It will be a 

subject for future works. 

In order to compare and analyze the efficiency of 
the systems, we implemented the RSA algorithm in 

embedded software running on MicroBlaze and SHA-

512 algorithm in hardware. Results are shown in 

Table I, II. 

B. Results and evaluation 

We assumed that it is necessary  to encrypt and 

decrypt for exchanging 256bit key length of AES-256 
symmetric encryption algorithm, which means 
encoding and exchanging 32bytes capacity of data. 

Table I shows the costs of resource, and the measured 
execution time of the RSA encryptor at SysInt and 

RSA decryptor at IPVend, by using the pairs of public 
key (N = 517, e = 3) and private key (N = 517, d = 

307). 

Table I.  Implementation results of the RSA algorithm 

RSA Core LOC in C 
Size in 

memory 
(KB) 

Execution 
time  

RSA_Decrypt 74 1.89 KB 0,9 s 

RSA_Encrypt 72 1.83 KB 0,01 s 

Table II shows the costs of resource  and the 
throughput of the SHA-512 algorithm in both 

hardware and embedded software. As it can be seen in 
Table II, the throughput of software solution is two 

times slower than that of the hardware solution.  

Table II. Resoures use of the SHA-512 algorithm 

SHA-512 
Core 

Size in 
memory 

Hardware Utilization 
(Used / Available) 

Through-
put 

Hardware - 
Slices:   
LUTs: 

852/54576  
2052/27288  

30Mbps 

Software  138 KB - 15.2Mbps 

The flexibility of the proposed scheme is the 
ability to combine both the RSA and SHA-512 

algorithms in software or RSA algorithm in software 

and SHA-512 algorithm in hardware, which depends 
on the system resource and the specific application.  

IV. CONCLUSIONS 

The proposed method of security key exchange has 
combined 3 factors: a number only used once, the 

public encryption algorithm and hash function. This 
ensures the integrity and confidentiality of secret key 

passing through untrusted network as well as the 
originality and availability of keys for parties, and the 
freshness and continuity of transmission sessions. 



Bả
n q

uy
ền

 th
uộ

c  

Tạ
p c

hí 
CNTT&TT Volume E-3, No.7 (11) 

 

 51

In addition, based on the proposed method, system 

designers can implement algorithms in hardware or 
software flexibility.  Future work will be optimizeing 

the performance of the algorithms that is implemented 
on FPGA-based reconfigurable embedded systems. 
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