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Abstract - This paper presents an analysis and 
comparisons photonic crystal fibers with both the 
octagonal and hexagonal structures for flatness 
dispersion managed applications. Management of 
chromatic dispersions in photonic crystal structures is a 
very important attempt for optical transmission 
systems, in both the linear and nonlinear regimes, and 
for any optical system supporting ultra-short soliton 
pulse propagation. It has been shown through 
numerical simulation results that using a four-ring 
octagonal lattices structure, ultra-flattened dispersion is 
of 0 ± 0.50 ps/(nm-km) within a 1.31 to 1.70 μm 
wavelength range (390 nm band). Confinement loss is as 
low as 0.001 dB/km within a 1.31 to 1.65 μm wavelength 
ranges. A four ring hexagonal lattices structure can 
assume near zero ultra-flattened dispersion of 0 ± 0.10 
ps/nm/km in the wavelength range of 1.45 µm to 1.75 
µm (300 nm) or, 0 ± 0.51 ps/nm/km in a 1.40 to 2.0 µm 
(600 nm) with low confinement loss of less than 10-3 
dB/m below 1.70 µm.  

Keywords - Photonic crystal fiber, flattened dispersion, 
confinement loss. 

I. INTRODUCTION 

Photonic crystal fibers (PCFs) have been 
attracted much scientific and technological interest in 
recent years. Broadly speaking, PCFs may be defined 
as optical fibers in which the core and/or cladding 
regions consist of micro-structured rather than 
homogeneous materials. The most common type of 
PCF, which was first fabricated in 1996, consists of a 
pure silica fiber with an array of air holes running 
along the longitudinal axis. In conventional optical 
fibers, electromagnetic modes are guided by total 
internal reflection in a core region whose refractive 
index is raised by doping of the base material. In 
PCFs, two distinct guiding mechanisms are possible: 
the guided modes may be trapped in a core with a 
higher average index than the cladding region by an 

effect similar to total internal reflection (often termed 
modified total internal reflection, or just index 
guiding), or they can be trapped in a core of lowered 
average index by a photonic band-gap effect. The 
existence of two different guiding mechanisms is one 
of the reasons for the versatile nature of PCFs. 

 
(a) 

 
(b) 

Figure 1. Cross-section geometry with three rings of 
air-holes of (a) O-PCF, and (b) DF-OPCF. 
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The chromatic dispersion in optical fibers is a 
very important problem for communication systems, 
in both the linear and nonlinear regimes, and for any 
optical system supporting ultra-short soliton pulse 
propagation [1]. In all cases, almost flattened 
dispersion behavior is a crucial issue. For example, in 
ultra-short optical soliton dispersion-managed systems 
the existence of non-negligible third order dispersion 
can lead to strong instabilities that destroy soliton 
pulse transmission features [2]. In the same way, it 
has been shown that the most suitable dispersion 
profile for flat and wideband supercontinuum 
generation in optical fibers is given by small normal 
dispersion and negligible third order dispersion [3]. 
Unlike in DWDM systems it is essential to maintain a 
uniform response in the different wavelength 
channels, which requires ultra-flattened dispersion 
and, moreover, with moderately low dispersion to 
minimize four wave mixing nonlinearities effects [4]. 
In all cases, the efficiency of the system depends 
greatly on the degree of flatness of the fiber 
dispersion. Fortunately, unlike the conventional step 
index fibers, photonic crystal fibers offer more 
flexibility to tune dispersion profile effectively for 
specific application. In this context, following sections 
describe novel dispersion-flattened PCFs based on the 
octagonal and hexagonal structures. 

II. DISPERSION FLATTENED PROPERTIES 
OF PCF WITH OCTAGONAL LATTICES 

A. The proposed octagonal lattices and design 
parameter. 

Recently, octagonal PCFs (O-PCFs) have been 
reported to have significantly wider single-mode 
wavelength range, more circular-like field distribution 
around the core, inherently high nonlinearity, and 
lower confinement loss than conventional H-PCFs [5, 
6]. Despite these attractive features, dispersion 
management of O-PCFs has not been studied yet. 
Therefore, as part of ongoing efforts to locate a novel 
PCF structure, in this section investigation is made on 
a defected ring O-PCF (hereinafter DF-OPCF) for 
ultra-flattened chromatic dispersion and low 
confinement losses. 

Figure 1(a) shows a simple O-PCF geometry with 
optimized air-hole diameters d and pitch Λ, and 
Figure 1(b) shows the geometry of a DF-OPCF in 
APSS with one defected ring that has relatively small 
air-hole diameters d1. The air-hole diameters on the 

other rings are d. Core diameter a equals 2Λ-dfirst ring. 
The spacing between air-holes on the same ring is Λ1, 
which is related to Λ by relation Λ1 ≈ 0.765Λ. In 
contrast to a conventional H-PCF, octagonal PCFs 
have isosceles triangular unit lattices with a vertex 
angle of 450. Due to such lattices, O-PCFs contain 
more air-holes in the cladding region with the same 
numbers of rings than H-PCFs. In O-PCFs, the total 
number of air-holes for rings 1, 2, 3, 4, and 5 are 
respectively 8, 24, 48, 80, and 120, whereas in a 
regular triangular lattice, the number of air-holes is 6, 
18, 36, 60, and 90, respectively. This results in a 
higher air-filling ratio and a lower refractive index 
around the core, thereby providing strong 
confinement ability. As there are eight air holes on 
the first ring and is placed in an octagonal rotational 
symmetry, O-PCF results in similar fundamental field 
distribution as that of the standard step index fibers 
[5]. Since periodicity in the cladding region is not 
essential to confine the guiding light in the high index 
core region [7], we propose a DF-OPCF that can 
assume ultra-flattened dispersion and low 
confinement loss.  

B. Numerical investigation and simulation results 

The fiber is simulated by a Finite Difference 
Method (FDM) with Perfect Matched Layer (PML) 
absorbing boundary condition [6]. For numerical 
calculations, Cartesian co-ordinate is utilized and the 
background material is pure silica with refractive 
index 1.45. To model the leakage, an open boundary 
condition is used, which produces no reflection at the 
boundary. PMLs are so far the most efficient 
absorption boundary condition for this purpose. The 
chromatic dispersion D() is easily calculated from 
the second derivative of the mode index, with respect 
to wavelength . The D() parameter can be 
numerically calculated as [7]: 

2

2

Re[ ]
( )

eff
d n

D
c d





 

                                     (1) 
in [ps/(nm-km)], where c is the velocity of light in 
vacuum,  is the real part of the refractive index.  is 
the wavelength in units of m. The confinement loss, 
Lc, can be calculated from the imaginary part of the 
mode index using the following equation [6]: 

0
8.686 Im[ ]

c eff
L k n

                                          (2) 
where Im[neff] is imaginary part of the effective mode 
index. The effective mode area is another important 
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parameter for fiber design. The effective area of fiber 
is calculated as follows [6]: 

 
                                      
in [m2], where E is the propagating electrical field. 
 

 
(a) 

 
(b) 

Figure 2. Wavelength response of chromatic 
dispersion of the DF-OPCF in both the x and y 
polarization directions for (a) variations in the 

diameter d1, and (b) variations in the diameter d 

In the design for DF-OPCF, four rings are used 
with one defected ring with air-hole diameter d1, as 
shown in Fig.1(b). The dispersion properties of the 
DF-OPCF are shown in Fig. 2 with a pitch and two 
different air-hole diameters,d1 and d. For Λ = 2.21 
μm, d =1.34 μm, and d1 = 0.62 μm, flattened 
dispersion of 0 ± 0.50 ps/(nm-km) is obtained (solid 
line) in the 1.31 to 1.70 μm wavelength range, since in 
a standard fiber draw, 1% variations in fiber diameters 

may occur [8]. Therefore, to account for this structural 
variations air-hole diameter d is varied between 1.32 
to 1.36 μm, d1 is varied between 0.6 to 0.64 μm, and 
Λ is varied from 2.20 to 2.22 μm, in Figs. 2(a), (b), 
and Fig. 3 respectively.  

 

 
Figure 3. Wavelength response of chromatic 

dispersion of DF-OPCF in x and y polarization 
directions for variations in pitch Λ 

 

Figure 4. Wavelength response of confinement loss 
and effective area of DF-OPCF with four rings, Λ = 

2.21 μm,   a = 3.80 μm, d =1.34 μm, and d1 = 0.62 μm 

The dispersion parameters are found to be more 
sensitive to variations in d1 and less sensitive to 
variations in d. A variation of ± 0.01 μm in d causes a 
corresponding average variation in dispersion of about 
± 0.29 ps/(nm-km) and for the same variations in d1, 
average dispersion variation is about ± 0.78 ps/(nm-
km) at 1.55μm wavelength. Again, a variation of ± 
0.01 μm in Λ causes a corresponding average 
variation in dispersion of about ± 1.42 ps/(nm-km). In 
[9], it has been reported that air hole diameters in the 
first ring, d1 has significant effects on both the 
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dispersion magnitude and slope. An increase in d1 
causes dispersion parameter to decrease more and the 
dispersion slope changes rapidly. In ref. [10], it has 
been reported that a very small variation in the center 
air hole diameter also causes significant changes in 
both the dispersion magnitude and slope. On the other 
hand, Figs. 2 and 3 shows that overall response of the 
DF-OPCF to variation in diameter, d1 is attracting in 
comparison to [9, 10]. A small variation in d1 does not 
affect the magnitude and the slope of dispersion 
parameter too much. But, variations in d and Λ cause 
similar dispersion variation as has been reported for 
the H-PCF. Therefore, a DF-OPCF may not so 
sensitive to changes in the diameter of air holes on the 
first ring.  As the effect of variations in air hole 
diameters on the higher order rings is not significant, 
it can be assumed that the proposed DF-OPCF may 
have better tolerance to changes in design parameters. 

Figure 4 shows the wavelength dependence of 
DF-OPCF confinement loss with Λ = 2.21 μm, d 
=1.34 μm, and d1 = 0.62 μm. Confinement loss is 
found to be less than a 0.001 dB/km within the 
considered wavelength ranges despite having only 
four rings. This is due to the fact that when using one 
defected ring with smaller hole diameters, the hole 
diameters required for the other rings are larger, which 
ultimately results in a higher air-filling ratio and 
causes higher index difference between the core and 
holey cladding. Fig. 8.4 also shows that the effective 
area of DF-OPCF for Λ = 2.21 μm, d =1.34 μm, and 
d1 = 0.62 μm is 9.6 μm2 at 1.55 μm wavelength. The 
nonlinear coefficient at 1.55 μm is about 10 W-1Km-1.  

Figure 5 depicts the electric field for x 
polarization mode at 1.55 μm wavelength. Due to the 
small diameters of the air-holes on the first ring, the 
field penetrates outside the first ring, resulting in a 
relatively larger effective area of 9.6 μm2. Notice that 
the field has been confined tightly within the second 
ring since no leakage is evident outside the second 
ring. PCFs with such a small effective area, flattened 
dispersion, and low confinement loss can find their 
way in different applications, such as optical 
parametric amplification and supercontinuum 
generation in the infrared. It is found that the 
DF-OPCF supports a second order mode around 1.50 
μm. But the fiber can effectively operate as a single 
mode fiber in the telecommunication windows as the 
confinement loss of this second mode is higher than a 
20 dB/km above 1.50 μm wavelength.  

Two apparent advantages of the proposed 
topology is that firstly, DF-OPCF can assume lower 
cladding effective refractive index due to increased 
number of air holes on each ring, this result in a very 
low confinement loss. Secondly, by changing 
diameter of air holes on the first ring only, ultra-
flatted chromatic dispersion in broadband range is 
obtained. Moreover, for DF-OPCF submicron 
adjustments may not require that often impose 
fabrication challenges.  

 

 

Figure 5. Fundamental mode field distribution at λ = 
1.55 μm with four rings, Λ = 2.21 μm, a = 3.80 μm, d 

=1.34 μm, and d1 = 0.62 μm. 

 

Fig. 6. The proposed DF-PCF structure with four 
rings. Diameter of air-holes on the first ring is d1, that 
of second to fourth rings is d2, and air-hole pitch is Λ. 

III. THE PROPOSED HEXAGONAL LATTICES 
AND DESIGN PARAMETERS 
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Figure 6 shows a simple geometry of the proposed 
dispersion flattened PCF (hereinafter DF-PCF) with 
optimized air-hole diameters d1, d2, and pitch Λ. Since 
periodicity in the cladding region is not essential to 
confine the guiding light in the high index core region 
[10], air-hole diameter on the first ring is scaled down 
to shape dispersion property while diameter of air-
holes on outer rings are kept larger for better field 
confinement. The present technique of modulating air-
hole dimension in order to achieve suitable dispersion 
characteristics is also used in [7, 11], but indeed it is 
important to utilize the technique to explore the best 
possible result. A PCF design in [7] contains many 
design parameters that may impose great fabrication 
challenges. Again PCF design in [11] results a 
reduction in design parameters, but it causes relatively 
larger effective area (13.2 μm2) and high confinement 
losses which is not so attractive for applications as a 
nonlinear media. On the other hand, we have shown 
successfully in the present design that modulating air-
hole diameter of only the first ring is sufficient to 
achieve near zero ultra-flattened dispersion and low 
confinement loss in a broad range of wavelengths.  

A. Numerical investigation and simulation results of 
compared hexagonal photonic crystal structure 

Figure 7 shows wavelength dependence of 
chromatic dispersion of the proposed DF-PCF for 
optimum design parameters. Optimizing the 
parameters d1, d2, and Λ ultra-flat chromatic 
dispersion of 0 ± 0.10 ps/nm/km is obtained (solid 
line) in the wavelength range of 1.45 μm to 1.75 μm 
for Λ = 1.70 μm, d1/Λ = 0.30 μm, and d2/Λ =0.67 μm. 
For optimization of the parameters a simple technique 
is applied. First a relative air-hole dimension d2/Λ is 
chosen in the range of 0.5 to 0.8. Larger value is 
chosen for better field confinement. Then a value of 
d1/Λ is calculated by examining the dispersion curves.  
It is known that in a standard fiber draw, ± 1% 
variations in fiber global diameter may occur [8] 
during the fabrication process. Therefore, roughly an 
accuracy of ± 2% may require ensuring dispersion 
flatness [9]. To account for this structural variation 
air-hole diameters d1 and d2 are varied up to ± 5% 
from their optimum values. Corresponding dispersion 
curves are shown in Figs. 8(a) and 8(b) respectively.  
While d1 is varied d2 and Λ are kept constant and 
while d2 is varied d1 and Λ are kept constant 
respectively. It is found that the DF-PCF maintains 
dispersion flatness within 0 ± 2.0 ps/nm/km for 
variation of d1 and d2 up to ± 2%. Figure 9 shows 

dispersion accuracy of the proposed fiber for fiber’s 
global diameter change (d1, d2, and Λ) of order ± 1, ± 
2 and ± 5% along with the optimum dispersion curve. 
It has been ensured that design accuracy of the fiber 
up to ± 2% change in fiber’s global diameter is within 
0 ± 2.0 ps/(nm-km) maintaining dispersion flat 
characteristics. 

 
(a) 

 
(b) 

Fig. 7 (a) Optimum dispersion curve of the proposed 
DF-PCF for number of rings Nr = 4, Λ = 1.70 μm, 

d1/Λ = 0.30 μm, and d1/Λ =0.67 μm. (b) Fundamental 
mode field distribution at λ = 1.55 μm. 

Figure 10(a) shows effective areas of the fiber for 
optimum design parameters and also for global 
diameter variations of order 1 to ± 5%. The effective 
area of the fiber at 1.55 μm is 7.10 μm2. Nonlinear 
coefficient of the fiber corresponding to 7.10 μm2 is 
more than a 12 W-1km-1. Figure 10(b) shows 
confinement losses of the fiber for optimum design 
parameters and also for global diameter variations of 
order 1 to ± 5%. Confinement loss at 1.55 μm is 10-4 
dB/m and is less than 10-3 dB/m below 1.70 μm. 
Finally, a comparison is made between the DF-PCF 
and some other designs for ultra-flattened PCFs. Table 
1 compares DF-PCF properties and some intriguing 
designs for ultra-flattened dispersion in the references 
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considering the ultra-flattened dispersion range, and 
number of design parameters including the number of 
rings layer. Nr, NΛ, and Nd correspond to the number 
of rings, pitches, and air-hole diameters used in PCF 
design, respectively.  

 
(a) 

 
(b) 

Fig. 8 Dispersion properties of the DF-PCF: (a) 
optimum dispersion and effects of changing d1, (b) 

optimum dispersion and effects of changing d2. 

        Although PCF in [10] is also attractive in the 
light of flat dispersion, its dispersion characteristic is 
more sensitive to variation in central defect air-hole 
diameter. On the other hand, the proposed DF-PCF 
has truly flat chromatic dispersion in the C and L band 
with low confinement loss and less design complexity, 
i.e., fewer design parameters as well as better 
fabrication tolerance to parameter variations. 
Therefore, the proposed fiber with a modest number 
of design parameters and novel dispersion properties 
may pave the way in different applications in 
nonlinear optics including optical parametric 
amplification, signal processing, soliton pulse 

transmission, and supercontinuum generation in the 
infrared, and so on. 

 

Fig. 9 Dispersion properties of the DF-PCF for 
fiber’s global diameter variation of order 1 to ± 5% 

around the optimum value (solid line). 

 
(a) 

 
(b) 

Fig. 10 (a) Effective areas and (b) Confinement losses 
of the proposed PCF for optimum design parameters 

and also for fiber’s global diameter variations of 
order 1 to ± 5% around the optimum value. 
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Table 1. Comparison of DF-PCF properties 
with some other remarkable designs 

PCFs 
Design 

D(λ) 1FDR 

(nm) 

2NDP(Nr, 
NΛ, Nd) 

Ref. [7] 0 ± 0.4 490 4, 1, 4 

Ref. [8] 0 ± 1.2 600 11, 1, 1 

Ref. [9] 0 ± 0.10 100 4, 1, 5 

Ref. [10]* 0.2 ± 0.2 506 4, 1, 2 

Ref. [11] 0 ± 0.50 430 4, 1, 2 

Ref. [12] 0 + 4.8 350 8, 2, 2 

Ref. [14] 0 ± 1.0 543 --, 1, 1 

Ref. [15] 0 ± 0.5 428 --, 1, 1 

DF-PCF 0 ± 0.1/    
0 ± 0.51 

300/600 4, 1, 2 

1FDR- flat dispersion range, 2NDP-number of design parameters,  

*Defected core PCF. 

IV. CONCLUSION 

First, an octagonal PCF with ultra-flattened chromatic 
dispersion and low confinement loss has been 
reported. It has been shown through numerical 
simulation results that using a four-ring PCF, ultra-
flattened dispersion is of 0 ± 0.50 ps/(nm-km) within a 
1.31 to 1.70 μm wavelength range (390 nm band). 
Confinement loss is as low as 0.001 dB/km within a 
1.31 to 1.65 μm wavelength ranges. Moreover, the 
proposed DF-OPCF shows better performance to 
variations in design parameters. Investigation based 
on O-PCF to obtain increased effective area 
dispersion flattened fiber is under study.  

Second, a near zero truly ultra-flattened dispersion 
PCF has been presented with low confinement losses. 
It has been shown through numerical simulation 
results that a four ring PCF can assume near zero 
ultra-flattened dispersion of 0 ± 0.10 ps/nm/km in the 
wavelength range of 1.45 µm to 1.75 µm (300 nm) or, 
0 ± 0.51 ps/nm/km in a 1.40 to 2.0 µm (600 nm) with 
low confinement loss of less than 10-3 dB/m below 
1.70 µm. This fiber has a modest number of design 
parameters, two air-hole diameters and an air-hole 
pitch. 
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