
Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development on Information and Communication Technology

48

Abstract - In this paper, we propose a method for
specifying the interface of components in real-time
concurrent systems. The key idea of the proposed
method is to extend Interface-based design with using
timed trace theory. We propose a technique to specify
the interaction protocols of component interfaces by the
languages of timed words augmented with the
concurrency, i.e. timed trace languages. In addition, we
propose a class of automata that can recognize a class of
timed trace languages called timed concurrent interface
automata. We give an algorithm for the refinement,
component composition, and show that our method
possesses two important features of interface automata
theory which are incremental design and independent
implementation. Those results play a key role in the
specification and verification of real-time concurrent
systems.

Keywords - concurrent systems, Mazurkiewicz trace, linear
temporal logic, timed trace, duration trace, Asynchronous
duration automata, interface automata.

1. INTRODUCTION

The component-based development of real-time
systems is considered as an efficient approach for
developing real-time systems because of the reductive
time and low cost while retaining the software quality.
According to this method, a complex system is made
of components. All individual components are
packages, web services or software modules. They are
connected to each other via interfaces. One of the
major challenges of this approach is how to ensure
that the composition of components is valid and that
the resulting system meets its requirements. To deal
with this problem, formal methods have been proved
to be more efficient. Interface-based design [3, 13] is
such a typical method. Based on this method, each
component of a system is specified by a tuple of
Input/Output ports and external behaviors, not internal
behaviors. Because the system specification is formal,
the behaviors and requirements of the system can be
specified exactly, and therefore we can apply formal

verification techniques to prove the correctness and
many valid properties of the system by using
automatic or semi-automatic tools.

In real-time concurrent systems, apart from the
aspects mentioned as above, there are execution-time
constraints that they need to satisfy, and they may
have some parts running in parallel for an efficient
implementation. Hence, the methods mentioned above
may not be strong enough for specifying and verifying
real-time concurrent systems. To solve the problem,
several methods have been proposed, but they still
have some limitations. Recent researches [18, 7 - 9]
proposed several methods for specifying and verifying
real-time concurrent systems. These methods usually
use timed automata [4] and similar techniques to
specify components. So each component is modeled
by a timed automaton. However, specifying the
concurrency by timed automata is difficult and
complicated. To overcome this problem, some other
methods [14, 15, 25, 27] have been proposed in order
to support the specification of concurrency. However,
they do not support specifying time constraints. Some
others can specify real-time concurrent executions [7]
but have not support component based systems.
Therefore, searching a good technique for specifying
and verifying the correctness and validity of
component-based real-time systems is still an
attractive topic in software technology.

In this paper, we propose a method to specify
component based real-time systems based on the
interface theory by extending it with timed and
concurrent protocols in order to support real-time
concurrent system specification. We suppose that an
action of a system includes functional specification,
non-functional specification and worst case execution
time. So interaction protocols in component interface
need to satisfy three following constraints:

A Formal Method for Specifying
The Interface of Components in Real-time

Concurrent Systems
Do Van Chieu

Faculty of Information Technology, HaiPhong Private University
Email: chieudv@hpu.edu.vn

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Vollume E-3 No.8 (12)

49

1. The sequencing constraints: the interactive

actions should obey some constraints on the
order they occur

2. The timing constraints: there are many
kinds of time constraints. In a component,

the most critical constraints are those saying
that the services (methods) cannot be called

so frequently if they cannot be executed in
parallel. This means that there should be

some minimum time distance between the

actions that must be sequencing.
3. The constraints on the parallel calls from

different threads: Which services can be
called in parallel with which ones.

To conduct this research, we propose to use
interface automata, which can recognize languages
with timed words and concurrent constraints. Hence,
the interface interaction protocol of each component is
a timed trace language recognized by timed interface
automaton. The contribution in this paper is to give
the composition, refinement and to show two aspects
of the component based development, which are
incremental design and independent implementation.

The rest of the paper is organized as follows: The
next section introduces the theory of timed trace and
asynchronous duration automata. These theories are
developed to support the verification and specification
of systems that have non-functional requirements.
Sections 3 presents some techniques for checking the
compatibility, for composition and refinement.
Section 4 discusses the specification technique for
real-time concurrent systems. Finally, Section 5 is the
conclusion of the paper.

2. TIMED TRACE AND ASYNCHRONOUS

DURATION AUTOMATA
Times trace and asynchronous duration automata

had been proposed in [7, 8, 9]. These studies have
shown the benefits of timed traces to support the
specification of real time concurrent systems. Such
benefits include the simplicity and the precision of
representation of the system behaviors in the form of
automata or a linear time logic formula. In this
section, we recall some concepts and important results
that will be used in this paper.

2.1.Timed traces

A dependence alphabet is a pair (�, �) where � is

a finite alphabet, � is a binary reflexive and

symmetric relation on � and is called dependence

relation. Given �, the independence relation � is the

complement of �. We call (�, �) independence

alphabet. For a set � ⊆ �, the set of letters dependent
on � is denoted by �(�) = {� ∈ � ∨ (�, �) ∈
��������� ∈ �}. A Mazurkiewicz's trace is an

isomophic class of a labeled partial order � =
(�, ≤, �) where � is a set of vertexes labeled by

�: � → � and ≤ is a partial order over � satisfying
the following conditions:

 For all � ∈ �, the downward set ↓ � =

{� ∈ � ∨ � ≤ �} is finite (and we call it

the history of event �), and

 for all �, � ∈ � we have that

��(�), �(�)� ∈ � implies � ≤ � or

� ≤ �, and that � ⋖ � implies

��(�), �(�)� ∈ �, where ⋖=�≤\≤�.

As usual, Σ∗ and Σ� denote the set of finite and

infinite words over � respectively, and �� denotes

�∗ ∪ � � . A word in �� is associated with a trace

over (�, �) by the mapping ����: � � → ��(�, �)

defined as: for � ∈ � � , ���� (�) is (the equivalence

class of) 〈�, ≤, �〉 where:

 � = ����(�) − {�} ,

 ≤ is the least partial order over �

satisfying that for ��, �′� ∈ � if �� is a

prefix of �′� and if (�, �) ∈ � then

�� ≤ �′�, and

 �(��) = �.

 We define the mapping ����: �� (�, �) → �� as

���� ([�, ≤, �])=� {�(�) ∨ � is a linearization of
(�. ≤)}. The map ���� is extended to be defined on

trace languages as follows: for any trace language �
over (�, �), ����(�) =� ⋃

�∈�
����(�) [7].

Now, we introduce some notions about the timed
traces as an extension of the traces. Let time be
continuous and represented as the set of non-negative

real ��� . Let ≤ also represent the natural ordering in

��� without the fear of confusion since its meaning is
clear from the context. As for the case of words, we

add a labeling function � to associate a vertex of a

trace with a time point in ���
Definition 1 (Timed Trace) A timed trace over

(�, �) is a pair (�, �) where

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development on Information and Communication Technology

50

 � = (�, ≤, �) is a trace over (�, �),

 �: � → ��� satisfying:

 � < �′ ⇒ � (�) ≤ �(�′) (time

should respect the causality), and

 if � is infinite, for any � ≥ 0 ,

there is a cut � of T such that

���{�(�) ∨ � ∈ �} ≥ � (time

should be progress and divergent)

A set of timed traces over (�, �) is called a timed

trace language [7]. Let ���� be the set of all time

durations over ��� , ����=� {[�, �]∨ � ∈ ��� ∧ � ∈
��� ∪ {∞} . Let ��: �� → ���� be a function that

associates a time duration to each � ∈ �,
andJ(a) =� (J�(a))�∈���(�) with ���(�) = {� ∈

����|� ∈ ��}. �(�) could be interpreted as a time
constraint for the execution time of the action a in

each process that involved in �.

Definition 2 (Duration Trace): Given �: � →
���� and a trace � = (�, ≤, �).

 The pair (�, �) is called an duration

trace.

 The timed trace language defined by the

duration trace (�, �), denoted by

���(�, �) is defined as {(�, �) ∨ (�, �) is

a timed trace and ∀� ∈ �, ∀�′ ∈⋖

 �, �(�′) ∈ �� ⇒ � (�) − ��′ ∈

����(�)�}.

Let ���(�, �) be

{(�, �) ∨ (�, �)���������(�, �)}. Given the interval

dependence alphabet (�, �, �) and a trace language L
over (�, �), we define timed trace language

���(�, �) as tTr(L, J) =�⋃ �∈� ttr(T, J).

Example 1 Given � = 〈�, ≤, �〉 is a trace over

� = {�, �}� ∪ {�, �} � where � = {�, �, �},� =
{��, ��, ��, ��, ��}, partial order ≤ defined as:

�� ≤ ��, �� ≤ ��, �� ≤ ��, �� ≤ ��, �(��) =
�, �(��) = �, �(��) = �, �(��) = �, �(��) = �,

function �: �(�) = [1,2], �(�) = [2,4], �(�) =
[1,3]. A timed trace (�′, �) defined by a duration
trace (�, �) is shown in Figure 1.

Figure 1: A timed trace defined by a duration

trace in Example 1

2.2. Asynchronous Duration Automata

As in [17] we call Σ� = {Σ�, . . . , Σ�} a distributed
alphabet, and and Γ� = {Γ�, . . . , Γ�} a distributed
interval alphabet where Γ� = {(a, J(a))|a ∈ Σ�}. Let

Γ =∪ �∈����Γ�}. In the sequel we use the following

notations. For � ∈ � �, �����(�) denotes the
projection of the word � on ��; and ����(�)

denotes the set of all prefixes of � . Let us define

���(�) = {� ∨ � ∈ ��} for any � ∈ �. For a set

{��}�∈���� , and � ∈ � with ���(�) =

{��, ��, . . . , ��}we denote by ����� the Cartesian

product ∏ �∈���� ��, and by �� the Cartesian product

��� × ��� ×. . .× ���}.

Definition 3: An asynchronous automaton over �~
is a
structure� = ({��}�∈����, {→�}� ∈
�, ���, {��}�∈����, {��}�∈����) where:

• Each �� is a finite set of i-local states,

• →�⊂ �� × �� for each a is a set of a-

transitions, and

• ��, �� are subsets of �� for each � ∈

����.

Let � defined as above, an asynchronous duration
automaton is an asynchronous automaton is equipped

with a timed mapping �with �(�)(= (�� (�))�∈���(�))

for each transition � (� − ����������).
Definition 4 (Asynchronous Duration

Automata) An Asynchronous Duration Automaton is

a pair (�, �) where � is an asynchronous duration
automaton.

We now define when a timed word is accepted by
(�, �) directly to justify our interpretation of time
constraints for interval traces.

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Vollume E-3 No.8 (12)

51

A run on a timed wordω ∈ (Σ × R��)� is a map

�: ����(�) → ����� defined by:

• (ε) ∈ S��, and

• for all prefix �(�, �) of� , �(�) →
�

� �(��)

and � − ����� (�) ∈ �� (�) for all � ∈

���(�) where for a time word � =

�′(�, �′)�"such that � ∈ � and �" has no

occurrence of a symbol in ��, we define

����� (�) =� �′.

The run � is an accepting run iff for each � ∈
���� either

• �����(�) is finite, and �(�′)(�) ∈ ��,

where �′ ∈ ����(�) and �����
(�′) =

����
�
(�), or

• �����(�) is infinite and �(�)(�) ∈ ��,

for infinitely many � ∈ ����(�).

When � is an accepting run on timed word � we

say that � is accepted by (�, �). The set of all timed
words accepted by asynchronous duration automaton
(�, �) is called timed language accepted by (�, �) and

denoted by ��(�, �). Like for the untimed case [24],
we have:

Theorem 1��(�, �) =
⋃ �∈���(�) �����(���(�, �)) .

The following definition gives a timed trace
language accepted by asynchronous duration
automaton.

Definition 5: Timed trace language accepted by an

asynchronous duration automaton (�, �) is defined as
����(�, �) =� ⋃ �∈���(�) ���(�, �).

If a word � ∈ � � is accepted by � then any word

�, ��������� (�)� is accepted by �. We define the

trace language accepted by � as
���(�) =� ����(���� (�)).

We have following result according to these results
in [7, 9] about empty checking problem of
asynchronous duration automaton.

Proposition 1: Let (�, �) is an asynchronous

duration automaton over (�, �), the empty checking

problem of (�, �) is decidable.

4. TIMED CONCURRENT INTERFACE

AUTOMATA

 From these above results, a timed trace can hold
all three characteristics of the real-time concurrent

protocol mentioned in the introduction. Moreover, the
duration alphabet can be represented constraints on
the implementation of the actions of the system. We

can use the finite asynchronous automaton � to

represent a trace language �, and extend it with a
duration function �: � → ���� to represent a timed
trace language. Note that the Marzurkiewicz trace
languages are very efficient for simultaneous binding,
we will use a set of timed traces that has a finite
representation as a specification for the interfaces (in
[8]). In this section, we provide a specification method
for concurrent real-time interfaces.

A concurrent real-time system is composed of real-
time concurrent components. Each real-time
concurrent component has an interface with its
interaction protocol satisfying the three constraints
introduced in Section 1. Therefore, ADAs with their
recognized timed trace languages representing
component interaction protocols are suitable for the
specification of the system components. In this
section, we will use these automata with some
constraints on actions set for specifying interface of
components. We also give concepts of composition
conditions, compatible, refinement and method for
parallel composition of components.

3.1. Definitions
As introduced in Section 1, the protocol of a real-

time concurrent component interface is timed trace
language. For the finite representation of the
languages, we use ADA. Therefore, a component
interface protocol can be specified as a ADA. A timed
concurrent interface automata is a ADA with input
and output actions of system. We give a formal
definition as follows.

Definition 6 (Timed Concurrent Interface
Automata): A timed concurrent interface automaton

(denoted by TCIA) is a 3-tuple � = ��, �, (��, �)�,

where � is a set of input actions, � is a set of output
actions and
(��, �) =
({��}�∈�����

, →�, ���, {��}�∈�����
, {��}�∈�����

) is

deterministic asynchronous duration automaton with

the alphabet � = � ∪ � .
 For the sake of simplicity but without loss of

expressiveness, only deterministic asynchronous
duration automata are used in modeling interface and

we denote � in �� instead of ��.

Given a TCIA �, the interface language of � is

defined as the language of ADA (�, �), i.e, the

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development on Information and Communication Technology

52

language of � is a timed trace language recognized by

ADA (�, �). We denote set of state transition of TCIA

� as ����(�) = ����(�, �) =→�. If � ∈ � (� ∈ �)

then (�, �, �′) ∈ ����(�, �) is called input (output)

transition of TCIA � and denoted �����(�)

(�����(�)).
An action � ∈ � is called to active at state

� ∈ ����� if (�, �, �′) ∈ ����(�). We denote

�(�) = �(�) ∪ � (�) as a set of all actions activated

at �. All input actions in I\I(s) is set of unacceptable
at state s.

Example 2: Give TCIA � = (��, ��, (��, ��))

where �� = {�}, �� = {�, �}, ����� = {1,2}, �� =
{{�, �}, {�, �}}, ��

�� = {���, ���}, �� = �� =
{���, ���}, �� = {���, ���, ���, ���}, ��(�) =
[1,2], ��(�) = [2,3], ��(�) = [1,3], and independent
relation �� = {(�, �), (�, �)}, because � and � belong
to 2 different processes. Timed trace language of � is
set of timed traces such that they satisfy duration trace
� = {(�(���)�, ��)}. A presentation of � is shown in
Figure 2, these action transitions are shown in Table
1.

Figure 2: A TCIA � where ��(�) = [1,2], ��(�) =
[2,3], ��(�) = [1,3] (i) and it's state transition graph

(ii)

Table 1. A transition table of TCIA � in Example 2

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

Figure 3: TCIA � where ��(�) = [2,3], ��(�) =

[1,3], ��(�) = [2,4] (i) and it's state transition graph

(ii) is compatible with TCIA � in Example 2

3.2. Composability and Parallel Composition of
TCIA

According to Interface Automata theories, we need
to give a method for composition between TCIAs to
build a big component which has more functions. So,

given two automata � and �, constructing their
composition is give a TCIA which specifies the

composite interface of them � = � ∨ �. Two TCIA

� and � is composable if the composition between
them is not empty. Firstly, we give a definition for
Composability of automata.

Definition 7 (Composability): Two TCIA � and �
are composable if

1. Set of input actions �� and �� and set of

output actions �� and �� is not

intersection,

2. These timed functions �� and �� over

shared actions �ℎ����(�, �) = �� ∩

�� is not conflict, i.e. for all action

� ∈ �ℎ����(�, �), ��(�) ∩ ��(�) ≠ ∅,

and

3. Set of processes ����� and ����� is not

intersection.

Definition 8: Given two composable TCIAs � and

�, the set of illegal states denoted �������(�, �) ⊆
�� × �� where �� = {��}�∈�����

 and �� =

{��}�∈�����
 is a set of states of � and � respectively,

defined as following:

�������(�, �) = {(��, ��) ∈ �� × �� such that

exists � ∈ �ℎ����(�, �) where � ∈ ��(��) ∧ � ∉
��(��) or � ∈ ��(��) ∧ � ∉ ��(��)}

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Vollume E-3 No.8 (12)

53

Example 3: Given a TCIA � = (��, ��, (��, ��))

vá»›i �� = {�, �}, �� = {�}, ����� = {3,4}, ��� =

{{�, �}, {�, �}}, ��
�� = {���, ���}, �� = �� =

{���, ���}, �� = {���, ���, ���, ���}, ��(�) =

[2,4], �� (�) = [2,3], ��(�) = [1,3] and the

independent relation �� = {(�, �), (�, �)} because �

and � belong to 2 different processes. The timed trace
language of � is set of timed traces such that they
satisfy duration trace � = {((���)�, ��)}. A

presentation of � is shown in Figure 3.

Table 2. The transition Table of TCIA � in Example 3

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

(���, ���) →
�

 (���, ���)

Now, we are ready to give definition about parallel
composition between two TCIAs

Definition 9 (Parallel Composition): The parallel

composition of composable TCIAs � =

���, ��, (��, ��)� and � = ���, ��, ���, ����

denoted by � ∥ � is a TCIA � = ���, ��, (��, ��)�

where:
• �� = �� ∪ �� and �� = (�� ∪ ��)\�� ,

• ����� = ����� ∪ ����� , Σ�� = Σ�� ∪ Σ��,
�� = ��⨄�� = {��(�) ∪ ��(�)|� ∈ Σ�, � ∈

Σ�, � ≠ �} ∪ {��(�) ∩ ��(�)|� ∈ Σ� ∩
Σ�}, and

• �� =
({��}�∈�����

×

{��}�∈�����
, {

�
→�}�∈��

, {(��, ��)|�� ∈

���
� ∧ �� ∈ ���

�
}, {��}�∈�����

×

{��}�∈�����
, {��}�∈�����

× {��}�∈�����
),

where
�
→�= {(��

�, ��
�

)
�
→� (�′�

�, �′�
�

)|��
�

�
→� �′�

� ∧

��
� �

→� �′�
�

∧ � ∈ (Σ� ∩ Σ�)} ∪

{(��
�, ��

�)
�
→� (�′�

�, ��
�)|��

�
�
→� �′�

� ∧ � ∈
(Σ�\Σ�)} ∪

{(��
�, ��

�)
�
→� (��

�, �′�
�)|��

�
�
→� �′�

� ∧ � ∈
(Σ�\Σ�)}.

 From the definition above, because the parallel

composition of two TCIAs is also a TCIA, so the
emptiness problem of parallel composition is
decidable (based on Proposition 1)

Example 4: The parallel composition of TCIA �
and � is shown in Figure 4, and its accepted timed
trace language is set of timed traces that satisfy
duration trace � = {(�(����)�, �} where � = �� ∪ ��

and independent relation � = {(�, �), (�, �)}.

Figure 4: The result of parallel composition

of � and � in Figure 2 and 4

The problem is that in the composition automaton
can exist the illegal states (due to the provision of
services by each automaton is missing or conflict) or
infertility states. We need to give solution to prevent
these states. The general solution for this problem is to
provide an environment for composition. Hence, an
environment is a TCIA that provide enough conditions
for component composition.

Definition 10 (Environment): An environment for

a TCIA � is a TCIA � that can satisfy these conditions
as follow:

• � and � are composable,

• � not empty,

• �� = �� , and

• �������(�, �) = ∅.

Example 5: TCIA � in Figure 4 is an

environment of TCIA � shown in Figure 2.
Similar to un-timed case, we also have concept of

compatibility of two composable TCIAs.

Definition 11 (Compatibility): Two TCIAs � and
� are compatible if they are non-empty, composable
and the composite automaton is not empty.

From the parallel composition, given composable
TCIAs �, � and �, the association property of them is
still satisfied. It is expressed through the following
theorem.

Theorem 2: (� ∥ �) ∥ � = � ∥ (� ∥ �)
Proof: Easily to proof according to definition.
An interface automaton represents assumptions

about the environment and guarantees of the

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development on Information and Communication Technology

54

component. Output steps encode assumption that the
output must be accepted. Unaccepted input actions at
a state prohibits the environment from providing that
input. Guarantees about sequence and choice of
actions. Composition combines both environment
assumptions and component guarantees. There is a
particularly simple legal environment for every

composable � and �. It accepts all outputs of � ∥ �,
does not provide any inputs. This environment avoids
entering illegal states whenever possible.

3.3. Refinement

When developing component-based systems, we
need to care about making components to provide
more services and require less from their environment.
So, at each state, we have concepts of state refinement
to have a state which provides more outputs and
requires less inputs. We give the following formal
definition.

Definition 12 (State Refinement): Given two

TCIAs � and �, a state refinement relation from � to

� is a binary relations ±∈ �� × �� such that for all
(�, �) ∈ �� × ��, � ± � the following conditions
must be satisfied.

• ��(�) ⊆ ��(�),

• ��(�) ⊆ ��(�),

• ∀� ∈ ���(�) ∩ ��(�)� ∪

���(�) ∩ ��(�)� , ��(�) ⊆ ��(�), and

• ∀� ∈ ��(�) ∪ ��(�) and for all state

�′ ∨(�, �, �′) ∈ ����(�) there exist a

state �′ ∨(�, �, �′) ∈ ����(�) such that

�′ ± �′.
From this definition, we now give a concept of

interface refinement.

Definition 13 (Interface Refinement): A TCIA �

is called refinement from TCIA � and denoted by
� ± � if:

• �� ⊆ ��,

• �� ⊆ ��, and
• there exist a state refinement relation

from � to � such that if � ∈ ���
� , � ∈ ���

�

then � ± �.
So, a TCIA always refined from itself, i.e. given a

TCIA �, we have � ± �. Obviously, we have the
following results which are deduced directly from the
definition of the refinement.

Theorem 3: Given 3 TCIAs �, �, �, if � ± � and

� ± � then � ± �.
Finally, our results indicate an important role in

ensuring the independent implementation of the theory
of interface language for our model. This result
indicates the relationship between the parallel
composition and refinement of TCIAs. That is, if two
different TCIA is refined, then their parallel
composition with another TCIA is refinement
performance. This ensures that a TCIA is coupled to
the system, it also refined TCIA can be composed into
the system.

Theorem 4: Given 3 TCIAs �, � and � such that

� and � are composable and �� ∩ �� ⊆ �� ∩ �� . If

� and � are compatible and � ± � then � and � are

compatible and � ∥ � ± � ∥ �.
Proof: We show that the composition automata

� ∥ � and ±� ∥ � satisfy three conditions of
refinement according to Definition 13.

1. We show that ��∥� ⊆ ��∥�. From the assume

� ± � we have �� ⊆ �� , hence ��∥� ⊆ ��∥�.

2. We show that ��∥� ⊆ ��∥�. From the

assume � ± � we have �� ⊆ ��, so

��∥� ⊆ ��∥�.

3. There exists a state refinement relation from

� ∥ � to � ∥ � such that � ∈ ���
�∥�, � ∈ ���

�∥�

then � ± �. Because of � ± �, there exists a
state refinement relation from input state of �
into input state of �. Furthermore, input states
of � ∥ � include of input states of � and �,
input state of � ∥ � include of input states �
and � and � ± �. Therefore, from the state
refinement definition we have � ± � where

� ∈ ���
�∥�, � ∈ ���

�∥�.
Consequently, in the interface-based design, a

system will be specified by composing many
interfaces of components. According to this model, a
timed concurrent system is specified by a timed
concurrent interface automaton. This automaton is the
result of the parallel composition of interface
components.

4. RELATED WORKS

At present, there have been many languages
supporting the specification of the interface of
components, but these languages are either informal or
complicated in modeling systems. Therefore, recently
researches focus on formal method to design systems
based on the interface theory with less complex and
more efficiency. In this section, we overview some

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Vollume E-3 No.8 (12)

55

methods relating to interface automata theory and
methods for modeling concurrent systems.

Luca de Alfaro and Thomas A. Henzinger who
established fundamental notions of interface theory
and used it for specifying components [13]. In this
method, each component considers as a “BlackBox”,
users only know preconditions and post-conditions of
components (called interface), hence each component
is represented by its interface and specified by an
interface automaton. Systems will be built by
composing components based on component operators
that are defined. This paper focuses on the ways,
which are interactive between components,
composition, and composes condition of components.
The results have been applied for extending theory
and practice. Furthermore, some methods are
proposed by Laurent Doyen [16] who arguments
interface theory with reuse feature for specifying
components. Stavros Tripakis and partners [26] extend
the work of De Alfaro, Henzinger et al, on interface
theories for component-based design where such
input-output relations can be captured. This theory
supports both stateless and stateful interfaces, includes
explicit notions of environments and pluggability, and
satisfies fundamental properties such as preservation
of refinement by composition, and characterization of
pluggability by refinement.

Recently, there exist studies and methods proposed
using interface automata theory to give method for
specification and verification component-based
systems. In [5], Angelov introduced a method for
specification embedded control system by using
interface automata. Chouali and colleagues [10]
proposed a formal method for verifying component
assembly. Cao and partners in [6] extended interface
automata with z notation in order to give a
specification approach combining interface automata
and Z language [2]. Another application using
interface automata proposed by Li and his colleagues
in [21]. In this study, the authors presented a new web
services composition model and its verification
algorithm based on interface automata and extended
this automata to supports semantic descriptions of web
services. Aarts in [1] studied and gave a framework
for history dependent abstraction learning to get rid of
his previous frameworks using interface automata
theory. Lüttgen in [22] introduced a method for
modifying model interface automata (MIA) to deal
with internal computations and studying a MIA
variant make interface automata with optimistic and
pessimistic compatibility. This automaton is called

richer interface automata.
The biggest limitation of these methods is not to

support specifying timed constraints. To dealing with
the timed constraints problem, Alur and Dill in [4]
gave a theory of timed automata that becomes a
fundamental and powerful modeling technique for the
development of real-time systems. However the class
of timed words languages accepted by timed automata
is not closed for complement operator and it is not
easy to model distributed systems by (a network of)
timed automata (with UPPAAL model checker1). The
results in [18] are proposal to specify component
based real-time systems. They have given a notion
about real-time interface automata depending on timed
automata in order to specify interface-based systems.
These methods also supply refining, checking
validation and composing. However, they are still
limitations which are not specification concurrent
constraints over components. D.V.Hung and Truong
Hoang in [12] proposed a method that is a timed
extension of relation interface theory of Stavros
Tripakis and partners. They introduced the concept of
Real-time interfaces which are interfaces with timing
constraints relating the time of outputs with the time
of inputs. However, this method does not support
specifying concurrent systems.

The results in [19, 20, 23, 28] have launched
formal methods for the specification and verification
of concurrent systems based on Mazurkiewicz's traces.
However, their methods focus only on systems with
no timing constraints. To solve this problem, D.V.
Chieu and D.V. Hung have proposed timed trace
theory, which extended timed feature in trace theory
[7]. The authors indicated the benefit of this theory for
specifying real-time concurrent systems in which
targets flexible representation, concision, etc.
Especially, this theory deals with two important
aspects, they are finite representation by asynchronous
duration automata and LTL over timed trace. The
paper explicitly indicates timed trace more flexibly
represents than timed language and timed automata.
Depending on the results in [8], authors apply timed
trace theory for rCOS[27] in specifying component
based systems with real-time concurrent feature.
However, these results do not care about input/output
requirements (A new approach solves problem, which
is designer merely takes care of external constraint of
components but do not take care internal behaviors
and consider components as a “BlackBox”). The other

1 www.uppaal.org/

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TTResearch, Development on Information and Communication Technology

56

an application for specification is real-time distributed
systems has proposed in [9] but do not mentioned
interface automata so it cannot apply for specifying
component based real-time systems. Studies in [11]
used timed traces in solving runtime verification
problems for real-time systems. Runtime verification
is checking whether a system execution satisfies or
violates a given correctness property. A procedure that
automatically, and typically on the fly, verifies
conformance of the system's behavior to the specified
property is called a monitor. The results of this study
offer a technique using two "black boxes", the system
and its reference model, are executed in parallel and
stimulated with the same input sequences; the monitor
dynamically captures their output traces and tries to
match them.

In brief, the above results either only deal with a
piece of specification problem or propose a method,
but complicate or do not suit and difficult to deploy on
real-time concurrent systems. In real-timed concurrent
systems, the paper uses real-time interface automata
can comprehensively solve problem because of its
illustration, simple and reliability.

5. CONCLUSION

 The paper has proposed a method to specify real-
time concurrent systems. The main idea of this
method is to use the interface theory and the timed
trace theory as the foundation for the method.
According to this method, each component of a
system is specified as timed concurrent interface
automaton. Those automata for components are
asynchronous duration automata which have the set of
actions separated into two non-empty sets, one is input
actions set and the other is output actions set.

In our work, we define the compatibility
properties, the composition of components,
environments, and the refinement of components. The
method guarantees two basic features of the interface
based design theory that are incremental design and
independent implementation. All above features
ensure that a system can be extended with composite
compatible components independently on the order of
composition (association properties). Besides, a
system can be improved by composing the
refinements from old ones in order to make a new
system, which can support better services at output,
but needs least requirements in input. However, the
mentioned method has not supported specifying by
Logic and is missing a tool for model checking. In the
future, we will complete the study by adding

specifying systems based on logic in context of Linear
Temporal Logic over Timed Trace. Therefore, a
system can be verified in design step with existing
specification tools.

ACKNOWLEDGMENT

This work is supported by the project no.

QG.13.01 granted by Vietnam National University,
Hanoi (VNU).

REFERENCES

[1]. Aarts, F. Heidarian, and F. Vaandrager. A theory of
history dependent abstractions for learning interface
automata. In Proceedings of the 23rd International
Conference on Concurrency Theory, CONCUR'12,
pages 240–255, Berlin, Heidelberg, 2012. Springer-
Verlag.

[2]. Abrial. Data semantics. In IFIP Working Conference
Data Base Management, pages 1–60, 1974.

[3]. D. Alfaro and T. A. Henzinger. Interface-based design.
In In Engineering Theories of Software Intensive
Systems, proceedings of the Marktoberdorf Summer
School. Kluwer, 2004.

[4]. Alur and D. L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235, 1994.

[5]. Angelov, F. Zhou, and K. Sierszecki. Specification of
embedded control systems behaviour using actor
interface automata. In Proceedings of the 8th IFIP
WG 10.2 International Conference on Software
Technologies for Embedded and Ubiquitous Systems,
SEUS'10, pages 167–178, Berlin, Heidelberg, 2010.
Springer-Verlag.

[6]. Cao and H. Wang. Extending interface automata with z
notation. In Proceedings of the 4th IPM
International Conference on Fundamentals of
Software Engineering, FSEN'11, pages 359–367,
Berlin, Heidelberg, 2012. Springer-Verlag.

[7]. V. Chieu and D. V. Hung. An extension of
mazukiewicz traces and their applications in
specification of real-time systems. In Proceedings of
the second international Conference on knowledge
and systems engineering 2010. IEEE Computer
Society, 2010.

[8]. V. Chieu and D. V. Hung. A formal model for
concurrent real-time component-based systems.
Journal of science and technology Vietnam,
49(4A):435, 2011.

[9]. V. Chieu and D. V. Hung. Timed traces and their
applications in specification and verifiction of

Bả
n q

uy
ền

 th
uộ

c

Tạ
p c

hí
CNTT&TT Vollume E-3 No.8 (12)

57

distributed real-time systems. In Proceedings of the
Third International Symposium on Information and
Communication Tecnology 2012. IEEE Computer
Society, 2012.

[10]. S. Chouali and A. Hammad. Formal verification of
components assembly based on sysml and interface
automata. Innov. Syst. Softw. Eng., 7(4):265–274,
Dec. 2011.

[11]. M. Chupilko and A. S. Kamkin. Runtime verification
based on executable models: On-the-fly matching of
timed traces. In Proceedings Eighth Workshop on
Model-Based Testing, MBT 2013, Rome, Italy, 17th
March 2013., pages 67–81, 2013.

[12]. Dang Van and H. Truong. Modeling and specification
of real-time interfaces with utp. In Z. Liu, J.
Woodcock, and H. Zhu, editors, Theories of
Programming and Formal Methods, volume 8051 of
Lecture Notes in Computer Science, pages 136–150.
Springer Berlin Heidelberg, 2013.

[13]. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering (FSE), ACM,
pages 109–120. Press, 2001.

[14]. Diekert and Y. MĂ©tivier. Partial commutation and
traces, 1997.

[15]. Diekert. The Book of Traces. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1995.

[16]. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov.
Interface theories with component reuse. In
Proceedings of the 8th ACM international conference
on Embedded software, EMSOFT '08, pages 79–88,
New York, NY, USA, 2008. ACM.

[17]. D'Souza. A logical study of timed distributed
automata. 2000.

[18]. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager.
The Theory of Timed I/O Automata (Synthesis
Lectures in Computer Science). Morgan & Claypool
Publishers, 2006.

[19]. M. Keller. Parallel program schemata and maximal
parallelism i. fundamental results. J. ACM,
20(3):514–537, 1973.

[20]. Leucker. On model checking synchronised hardware
circuits. In J. He and M. Sato, editors, Proceedings
of the 6th Asian Computing Science Conference
(ASIAN’00), volume 1961 of Lecture Notes in
Computer Science, page 182–198, Penang, Malaysia,
2000. Springer, Springer.

[21]. Li, S. Chen, L. Jian, and H. Zhang. A web services

mposition model and its verification algorithm based
on interface automata. In Proceedings of the
2011IEEE 10th International Conference on Trust,
Security and Privacy in Computing and
Communications, TRUSTCOM '11, pages 1556–
1563, Washington, DC, USA, 2011. IEEE Computer
Society.

[22]. Lüttgen, W. Vogler, and S. Fendrich. Richer interface
automata with optimistic and pessimistic
compatibility. Acta Inf., 52(4-5):305–336, June 2015.

[23]. Mazurkiewicz. Trace theory. In Advances in Petri
nets 1986, part II on Petri nets: applications and
relationships to other models of concurrency, pages
279–324, New York, NY, USA, 1987. Springer-
Verlag New York, Inc.

[24]. S. Thiagarajan and I. Walukiewicz. An expressively
complete linear time temporal logic for mazurkiewicz
traces. Inf. Comput., 179(2):230–249, 2002.

[25]. S. Thiagarajan. A trace based extension of linear time
temporal logic. In LICS, pages 438–447. IEEE
Computer Society, 1994.

[26]. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee.
On relational interfaces. Technical Report
UCB/EECS-2009-60, EECS Department, University
of California, Berkeley, May 2009.

[27]. Zhan, E. Y. Kang, and Z. Liu. Component
publications and compositions. In Proceedings of the
2nd international conference on Unifying theories of
programming, UTP'08, pages 238–257, Berlin,
Heidelberg, 2010. Springer-Verlag.

[28]. Zielonka. Notes on finite asynchronous automata.
ITA, 21(2):99–135, 1987.

AUTHOR’S BIOGRAPHY

Do Van Chieu is working at
Faculty of Information

Technology, HaiPhong Private
University. He received the

Engineer and M.Sc. degrees in
software engineering from

Hanoi University of Science
and Technology in 2003 and

2005. His research interests
include Component-based Software Design, Formal

Techniques for Software Specification and
Verification.

