
Research, Development and Application on Information and Communication Technology

 - 5 -

Abstract: This paper reports a new parallel and
distributed simulation architecture for OMNeT++, an
open-source discrete event simulation environment.
The primary application area of OMNeT++ is the
simulation of communication networks. Support for a
conservative PDES protocol (the Null Message
Algorithm) and the relatively novel Ideal Simulation
Protocol has been implemented. Placeholder modules, a
novel way of distributing the model over several logical
processes (LPs) is presented. The OMNeT++ PDES
implementation has a modular and extensible
architecture, allowing new synchronization protocols
and new communication mechanisms to be added easily,
which makes it an attractive platform for PDES
research, too. We intend to use this framework to
harness the computational capacity of high-
performance cluster computers for modeling very large
scale telecommunication networks to investigate
protocol performance and rare event failure scenarios.

Keywords: Parallel simulation, discrete-event
simulation, PDES

I. INTRODUCTION

Telecommunication networks are increasingly
becoming more complex as the trend toward the
integration of telephony and data networks into
integrated services networks gains momentum. It is
expected that these integrated services networks will
include wireless and mobile environments as well as
wired ones. As a consequence of the rapid
development, reduced time to market, fusion of
communication technologies and rapid growth of the
Internet, predicting network performance, and

eliminating protocol faults have become an extremely
difficult task. Attempts to predict and extrapolate the
network performance in small-scale experimental
testbeds may yield incomplete or contradictory
outcomes. Application of analytical methods is also
not feasible due to the complexity of the protocol
interactions, analytical intractability and size [1]. For
large scale analysis in both the spatial and temporal
domain, accurate and detailed models using parallel
simulation techniques offer a practical answer. It
should be noted that simulation is now considered as a
tool of equal importance and complementary to the
analytical and experimental studies for investigating
and understanding the behavior of various complex
systems such as climate research, evolution of solar
system and modeling nuclear explosions.

 This paper reports about the results of implementing
parallel simulation support in the OMNeT++ discrete
event simulation tool [17]. OMNeT++ is a useful
framework for creating various simulation models to
evaluate the performance of various algorithms,
mechanisms and solutions in telecommunication
networks [21-25]. The user community meets at
annual workshops [26, 27]. The parallel simulation
project has been motivated by and forms part of our
ongoing research programs at CTIE, Monash
University on the analysis of protocol performance of
large-scale mobile IPv6 networks. We have developed
a set of OMNeT++ models for accurate simulation of
IPv6 protocols [7]. We are now focusing our efforts
to simulate mobile IPv6 networks in very large scale.

Parallel Network Simulation
With OMNeT++

András Varga 1, Ahmet Y. Şekercioğlu 2
1 OpenSim Ltd, Budapest, Hungary

Email: andras@omnetpp.org
2 Centre for Telecommunication and Information Engineering

Monash University, Melbourne, Australia
Email: asekerci@ieee.org

 Volume E-1, No.1(5)

 - 6 -

 For this purpose, we intend to use the computational
capacity of APAC (http://www.vpac.org) and VPAC
(http://www.apac.edu.au) supercomputing clusters. In
a series of future articles, we will be reporting our
related research on synchronization methods, efficient
topology partitioning for parallel simulation, and
topology generation for mobile/wireless/cellular
Internet.

II. PARALLEL SIMULATION OF COMMUNICATION
NETWORKS TODAY

Discrete event simulation of telecommunications
systems is generally a computation intensive task. A
single run of a wireless network model with thousands
of mobile nodes may easily take several days and
even weeks to obtain statistically trustworthy results
even on today's computers, and many simulation
studies require several simulation runs [1].

Independent replicated simulation runs have been
proposed to reduce the time needed for a simulation
study, but this approach is often not possible (for
example, one simulation run may depend on the
results of earlier runs as input) or not practical.
Parallel discrete event simulation (PDES) offers an
attractive alternative. By distributing the simulation
over several processors, it is possible to achieve a
speedup compared to sequential (one-processor)
simulation.

Another motivation for PDES is distributing
resource demand among several computers. A
simulation model often exceeds the memory limits of
a single workstation. Even though distributing the
model over several computers and controlling the
execution with PDES algorithms may result in slower
execution than on a single workstation (due to
communication and synchronization overhead in the
PDES mechanism), but at least it is possible to run the
model. It is a recent trend that clusters (as opposed to
shared memory multiprocessors) are becoming an
attractive PDES platform [12], mainly because of their
excellent price/performance ratio. Also, very large-
scale network simulations demand computing

capacity that can only be provided with cluster
computing at affordable costs.

Despite about 15-20 years on research on parallel
discrete event simulation (see e.g.[3]), PDES is today
still more of a promise than part of everyday practice.
Fujimoto, a PDES veteran [4], recently expressed this
as: "Parallel simulation provides a benefit, but it has
to be transparent, automatic, and virtually free in order
to gain widespread acceptance. Today it ain't. It may
never be." [5]

What parallel simulation tools are available
today for the communication networks research
community ? A parallel simulation extension for
the traditionally widely used ns2 simulator has
been created at the Georgia Institute of
Technology [11], but it is not in wide use.
SSFNet [15] claims to be a standard for parallel
discrete event network simulation. SSFNet's Java
implementation is becoming popular in the
research community, but SSFNet for C++
(DaSSF) does not seem to receive nearly as much
attention, probably due to the lack of network
protocol models. J-Sim [6], another popular
network simulation environment does not have
PDES support. Parsec [1] with its GloMoSim
library have morphed into the commercial
Qualnet network simulation product [13]. The
optimistic parallel simulation tool SPEEDES [14]
[16] has similarly become commercial, and it is
apparently not being used for simulation of
communication networks.

The best-known commercial network simulation
tool, OPNET [10], does support parallel simulation,
but little has been disclosed about it. It appears that
OPNET simulations can make use of multiprocessor
architectures, but cannot run on clusters.

 Apparently, the choice is limited for communication
networks research groups that intend to make use of
parallel simulation techniques on clusters. SSFNet for

Research, Development and Application on Information and Communication Technology

 - 7 -

Java appears to be a feasible choice, but in the C/C++
world there is probably no really attractive choice
today. The project effort published in this paper
attempts to improve this situation, and there is a good
chance that OMNeT++ can fill this niche.

III. PARALLEL SIMULATION SUPPORT IN
OMNET++

A. About OMNeT++

OMNeT++ [17] is a discrete event simulation
environment. The primary application area of
OMNeT++ is the simulation of communication
networks, but because of its generic and flexible
architecture, it has been successfully used in other
areas like the simulation of complex IT systems,
queueing networks or hardware architectures as well.
OMNeT++ is rapidly becoming a popular simulation
platform in the scientific community as well as in
industrial settings. The distinguishing factors of
OMNeT++ are its strongly component-oriented
approach which promotes structured and reusable
models, and its extensive graphical user interface
(GUI) support. Due to its modular architecture, the
OMNeT++ simulation kernel (and models) can be
easily embedded into your applications. OMNeT++ is
open-source and free for academic and non-profit use.

An OMNeT++ model consists of modules that
communicate with message passing. The active
modules are termed simple modules; they are written
in C++, using the simulation class library. Simple
modules can be grouped into compound modules.
Both simple and compound modules are instances of
module types. While describing the model, the user
defines module types; instances of these module types
serve as components for more complex module types.
Finally, the user creates the system module as an
instance of a previously defined module type.

Modules communicate with messages which – in
addition to usual attributes such as timestamp – may
contain arbitrary data. Simple modules typically send
messages via gates, but it is also possible to send them
directly to their destination modules.

Gates are the input and output interfaces of
modules: messages are sent out through output gates
and arrive through input gates. An input and an output
gate can be linked with a connection. Connections are
created within a single level of module hierarchy:
within a compound module, corresponding gates of
two submodules, or a gate of one submodule and a
gate of the compound module can be connected.

Due to the hierarchical structure of the model,
messages typically travel through a chain of
connections, to start and arrive in simple modules.
Compound modules act as "cardboard boxes" in the
model, transparently relaying messages between their
inside and the outside world. Connections can be
assigned properties such as propagation delay, data
rate and bit error rate.

B. PDES Features

This section introduces the new PDES architecture
in OMNeT++ [19] (OMNeT++ has had experimental,
statistical synchronization-based PDES support [20]
before our work). In its current form, the new
architecture supports conservative synchronization via
the classic Chandy-Misra-Bryant (or Null Message)
Algorithm [3] over MPI, and accommodates extension
points to implement other synchronization
mechanisms and other transport layers as well.

The OMNeT++ design places a big emphasis on
separation of models from experiments. The main
rationale is that usually a large number of simulation
experiments need to be done on a single model before
a conclusion can be drawn about the real system.
Experiments tend to be ad-hoc and change much
faster than simulation models, thus it is a natural
requirement to be able to carry out experiments
without changing the simulation model itself.

Following the above principle, OMNeT++ allows
simulation models to be executed in parallel without
modification. No special instrumentation of the source
code or the topology description is needed, as
partitioning and other PDES configuration is entirely
described in the configuration files (in contrast, ns2

 Volume E-1, No.1(5)

 - 8 -

requires modification of the Tcl code, and SSFNet
requires modification of the DML file(s)).

OMNeT++ supports the Null Message Algorithm
(NMA) with static topologies, using link delays as
lookahead. The laziness of null message sending can
be tuned. Also supported is the Ideal Simulation
Protocol (ISP) introduced by Bagrodia in 2000 [2].

ISP is a powerful research vehicle to measure the
efficiency of PDES algorithms, optimistic or
conservative; more precisely, it helps determine the
maximum speedup achievable by any PDES algorithm
for a particular model and simulation environment. In
OMNeT++, ISP can be used for benchmarking the
performance of the NMA. Additionally, models can
be executed without any synchronization, which can
be useful for educational purposes (to demonstrate the
need for synchronization) or for simple testing.

For the communication between logical processes
(LPs), OMNeT++ primarily uses MPI, the Message
Passing Interface standard [9]. An alternative
communication mechanism is based on named pipes,
for use on shared memory multiprocessors without the
need to install MPI. Additionally, a file system based
communication mechanism is also available. It
communicates via text files created in a shared
directory, and can be useful for educational purposes
(to analyze or demonstrate messaging in PDES
algorithms) or to debug PDES algorithms.

Implementation of a shared memory-based
communication mechanism is also planned for the
future, to fully exploit the power of multiprocessors
without the overhead of and the need to install MPI.

Nearly every model can be run in parallel. The
constraints are the following:

• modules may communicate via sending
messages only (no direct method call or
member access) unless mapped to the same
processor

• no global variables.

• there are some limitations on direct sending (no
sending to a submodule of another module,
unless mapped to the same processor)

• lookahead must be present in the form of link
delays

• currently static topologies are supported

PDES support in OMNeT++ follows a modular and
extensible architecture.

New communication mechanisms can be added by
implementing a compact API (expressed as a C++
class) and registering the implementation – after that,
the new communications mechanism can be selected
in the configuration file.

New PDES synchronization algorithms can be
added in a similar way. PDES algorithms are also
represented by C++ classes that have to implement a
compact API to integrate with the simulation kernel.
Setting up the model on various LPs as well as
relaying model messages across LPs is already taken
care of and not something the implementation of the
synchronization algorithm needs to worry about it
(although it can intervene if needed, because the
necessary hooks are present).

The implementation of the NMA is also modular in
itself in that a lookahead discovery mechanism can be
plugged in via a defined API. Currently implemented
lookahead discovery uses link delays, but it is possible
to implement more sophisticated ones and select them
through the configuration file.

C. Parallel Simulation Example

For demonstrating PDES capabilities of OMNeT++,
we use the closed queuing network (CQN) model
described in [2]. The model consists of N tandem
queues where each tandem consists of a switch and k
single-server queues with exponential service times
(Figure 1). The last queues are looped back to their
switches. Each switch randomly chooses the first
queue of one of the tandems as destination, using
uniform distribution. The queues and switches are
connected with links that have nonzero propagation

Research, Development and Application on Information and Communication Technology

 - 9 -

delays. Our OMNeT++ model for CQN wraps
tandems into compound modules.

S

S

S

S

S

S

Figure1: The Closed Queueing Network (CQN) model

To run the model in parallel, we assign tandems to
different LPs (Figure 2). Lookahead is provided by
delays on the marked links.

S

S

S

CPU2

CPU1

CPU0

Figure2: Partitioning the CQN model

To run the CQN model in parallel, we have to
configure it for parallel execution. In OMNeT++, the
configuration is in a text file called omnetpp.ini. For
configuration, first we have to specify partitioning,
that is, assign modules to processors. This is done
with the following lines:

[Partitioning]
*.tandemQueue[0].partition-id = 0
*.tandemQueue[1].partition-id = 1
*.tandemQueue[2].partition-id = 2

The numbers after the equal sign identify the LP.
Also, we have to select the communication library and
the parallel simulation algorithm, and enable parallel
simulation:

[General]

parallel-simulation=true
parsim-communications-class="cMPICommunications"
parsim-synchronization-class="cNullMessageProtocol"

When the parallel simulation is run, LPs are
represented by multiple running instances of the same
program. When using LAM-MPI [8], the mpirun
program (part of LAM-MPI) is used to launch the
program on the desired processors. When named pipes
or file communications is selected, the opp_prun
OMNeT++ utility can be used to start the processes.
Alternatively, one can launch the processes manually:

./cqn -p0,3 &

./cqn -p1,3 &

./cqn -p2,3 &

Here, the -p flag tells OMNeT++ the index of the
given LP and the total number of LPs. For PDES, one
will usually want to select the command-line user
interface of OMNeT++, and redirect the output to files
(OMNeT++ provides the necessary configuration
options.)

Figure 3: Screenshot of CQN running in three LPs

The GUI of OMNeT++ can also be used (as
evidenced by Figure 3), independent of the selected
communication mechanism. The GUI interface can
be useful for educational or demonstration purposes as
OMNeT++ shows the operation of NMA in a log

 Volume E-1, No.1(5)

 - 10 -

window, and one also can examine EIT and EOT
values.

D. Instantiation of Modules

When setting up a model partitioned to several LPs,
OMNeT++ uses placeholder modules and proxy gates.
In the local LP, placeholders represent sibling
submodules that are instantiated on other LPs. With
placeholder modules, every module has all of its
siblings present in the local LP – either as placeholder
or as the "real thing". Proxy gates take care of
forwarding messages to the LP where the module is
instantiated (see Figure 4).

tandem[1]
(placeholder)

tandem[0]

CPU0

tandem[1]
tandem[0]

(placeholder)

CPU1 comm. (MPI, pipe, etc.)

Figure 4: Placeholder modules and proxy gates

The main advantage of using placeholders is that
algorithms such as topology discovery embedded in
the model can be used with PDES unmodified. Also,
modules can use direct message sending to any sibling
module, including placeholders. This is so because the
destination of direct message sending is an input gate
of the destination module, thus if the destination
module is a placeholder, the input gate will be a proxy
gate which transparently forwards the messages to the
LP where the "real" module was instantiated.

A limitation is that the destination of direct message
sending cannot be a submodule of a sibling (which is
probably a bad practice anyway, as it violates
encapsulation), simply because placeholders are
empty and so its submodules are not present in the
local LP.

Instantiation of compound modules is slightly more
complicated. Since its submodules can be mapped to
different LPs, the compound module may not be
"fully present" on any given LP, and it may forced to

be present on several LPs (on all LPs where if one or
more submodules instantiated). Thus, compound
modules are instantiated wherever they have at least
one submodule instantiated, and are represented by
placeholders everywhere else (Figure 5).

(placeholder for
compound module)

simple
module

CPU0

simple

module
(placeh.)

CPU1

(placeh.)

(placeh.)(placeh.)

CPU2

simple

module

Figure 5: Instantiating compound modules

E. Performance Measurements

We have made several runs with the CQN model on
2 and 4 processors, with the following parameters:
N=16 tandem queues, k=10 and 50 queues per
tandem, with lookahead L=1, 5 and 10. The hardware
environment was a Linux cluster (kernel 2.4.9) of dual
1 Ghz Pentium III PCs, interconnected using a 100Mb
Ethernet switch. The communication library was
LAM-MPI [8]. The MPI latency was measured to be
22μs. Sequential simulation of the CQN model
achieved Pseq=120,000 events/sec performance.

 We executed simulations under NMA and (for
comparison) under ISP.

 The results are summarized in Table1. PISP, PNMA are
the performance (events/second) under the ISP and
the NMA protocol, and SISP, SNMA are the speedups
under ISP and NMA, respectively. It can be observed
that the L lookahead strongly affects performance
under NMA. An analysis of NMA performance versus
lookahead and other performance factors can be found
in [18]. However, it is probably too early to draw
conclusions from the figures below about the
performance of the OMNeT++ parallel simulation

Research, Development and Application on Information and Communication Technology

 - 11 -

implementation, because we are still optimizing the
code.

Table1: Comparison of NMA and ISP simulations

Configuration Performance
#LPs k L(s) PISP

(ev/s)
PNMA
(ev/s)

SISP SNMA

2 10 1 147,618 76,042 1.23 0.63
2 10 5 151,250 143,289 1.26 1.19
2 10 20 157,200 153,600 1.31 1.28
2 50 1 168,830 131,398 1.41 1.09
2 50 5 170,289 164,563 1.42 1.37
2 50 20 172,811 173,249 1.44 1.44
4 10 1 300,479 45,190 2.50 0.38
4 10 5 311,392 148,007 2.59 1.23
4 10 20 314,892 271,648 2.62 2.26
4 50 1 359,517 144,979 3.00 1.21
4 50 5 364,663 284,978 3.04 2.37
4 50 20 372,844 352,557 3.11 2.94

IV. DESIGN OF PDES SUPPORT IN OMNET++

Design of PDES support in OMNeT++ follows a
layered approach, with a modular and extensible
architecture. The overall architecture is depicted in
Figure 6.

Simulation Kernel
Parallel simulation
subsystem

Synchronization

Communication

Partitioning

Simulation Model

Event scheduling,
sending, receiving

communications library (MPI, sockets, etc.)

Figure 6: Architecture of OMNeT++ PDES implementation

The parallel simulation subsystem is an optional
component itself, which can be removed from the
simulation kernel if not needed. It consists of three
layers, from the bottom up: communication layer,
partitioning layer and synchronization layer.

The purpose of the Communications Layer is to
provide elementary messaging services between
partitions for upper layer. The services include send,
blocking receive, non-blocking receive and broadcast.

The send/receive operations work with buffers, which
encapsulate packing and unpacking operations for
primitive C++ types. The message class and other
classes in the simulation library can pack and unpack
themselves into such buffers. The Communications
Layer API is defined in the cFileCommunications
interface (abstract class); concrete implementations
like the MPI one (cMPICommunications) subclass
from this, and encapsulate MPI send/receive calls.
The matching buffer class cMPICommBuffer
encapsulates MPI pack/unpack operations.

The Partitioning Layer is responsible for
instantiating modules on different LPs according to
the partitioning specified in the configuration, for
configuring proxy gates. During the simulation, this
layer also ensures that cross-partition simulation
messages reach their destinations. It intercepts
messages that arrive at proxy gates, and transmits
them to the destination LP using the services of the
communication layer. The receiving LP unpacks the
message and injects it at the gate pointed to be the
proxy gate.

The implementation basically encapsulates the
cParsimPartition, cPlaceholderModule and
cProxyGate classes.

The Synchronization Layer encapsulates the parallel
simulation algorithm. Parallel simulation algorithms
are also represented by classes, subclassed from the
cParsimSynchronizer abstract class. The parallel
simulation algorithm is invoked on the following
hooks: event scheduling, processing model messages
outgoing from the LP, and messages (model messages
or internal messages) arriving from other LPs. The
first hook, event scheduling is a function invoked by
the simulation kernel to determine the next simulation
event; it also has full access to the future event list
(FEL) and can add/remove events for its own use.

Conservative parallel simulation algorithms will use
this hook to block the simulation if the next event is
unsafe, e.g. the null message algorithm
implementation (cNullMessageProtocol) blocks the

 Volume E-1, No.1(5)

 - 12 -

simulation if an EIT has been reached until a null
message arrives (see [2] for terminology); also it uses
this hook to periodically send null messages. The
second hook is invoked when a model message is sent
to another LP; the NMA uses this hook to piggyback
null messages on outgoing model messages. The third
hook is invoked when any message arrives from other
LPs, and it allows the parallel simulation algorithm to
process its own internal messages from other LPs; the
NMA processes incoming null messages here.

The null message protocol implementation itself is
modular as it employs a separate, configurable
lookahead discovery object. Currently only link delay
based lookahead discovery has been implemented, but
it is possible to implement more sophisticated ones.

The ISP implementation, in fact, consists of two
parallel simulation protocol implementations: the first
one is based on the NMA and additionally records the
external events (events received from other LPs) to a
trace file; the second one runs the simulation using the
trace file to find out which events are safe and which
are not.

Note that although we implemented a conservative
protocol, the provided API itself would allow
implementing optimistic protocols, too. The parallel
simulation algorithm has access to the executing
simulation model, so it could perform saving /
restoring model state if the code of the simulation
model supports this (unfortunately, support for state
saving/restoration needs to be individually and
manually added to each class in the simulation,
including user-programmed simple modules).

We also expect that because of the modularity,
extensibility and clean internal interfaces of the
parallel simulation subsystem, the OMNeT++
framework has the potential to become a preferred
platform for PDES research.

V. CONCLUSION

 The paper presented a new parallel simulation
architecture for OMNeT++. A merit of the

implementation is that it features the "separation of
experiments from models" principle, and thus allows
simulation models to be executed in parallel without
modification. It relies on a novel approach of
placeholders to instantiate the model on different LPs.

 The placeholder approach allows simulation
techniques such as topology discovery and direct
message sending to work unmodified with PDES. The
architecture is modular and extensible so it may serve
as a potential framework for research on parallel
simulation.

REFERENCES

[1] R. L. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng,

J. Martin, and H. Y. Song. Parsec: A parallel
simulation environment for complex systems. IEEE
Computer, pages 77–85, October 1998.

[2] R. L. Bagrodia and M. Takai. Performance evaluation
of conservative algorithms in parallel simulation
languages. IEEE Trans. on Parallel and Distributed
Systems, 11(4):395–414, 2000.

[3] M. Chandy and J. Misra. Distributed simulation: A
case study in design and verication of distributed
programs. IEEE Transactions on Software Engineering
SE-5, (5). 440–452, 1979.

[4] R. M. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, October
1990.

[5] R. M. Fujimoto. Parallel and distributed simulation in
the 21th century. In Grand Challenges for Modeling
and Simulation (Seminar 02351), 26-30 August 2002,
Dagstuhl Castle, Germany, 2002.

[6] J-Sim home page. http://www.j-sim.org.
[7] J. Lai, E. Wu, A. Varga, Y. A. Şekercioğlu, and G. K.

Egan. A simulation suite for accurate modeling of IPv6
protocols. In Proceedings of the 2nd OMNeT++
Workshop, pages 2–22, Berlin, Germany, January
2002.

[8] LAM-MPI home page. http://www.lam-mpi.org/.
[9] MPI: A message-passing interface standard.

International Journal of Supercomputer Applications,
8(3/4):165–414, 1994. Message Passing Interface
Forum.

Research, Development and Application on Information and Communication Technology

 - 13 -

[10] OPNET. OPNET Technologies, Inc. home page.
http://www.opnet.com/.

[11] Atlanta PADS Research Group, Georgia Institute of
Technology. PDNS-Parallel/Distributed NS home page.
http://www.cc.gatech.edu/computing/compass/pdns.

[12] C. D. Pham. High performance clusters: A promising
environment for parallel discrete event simulation. In
Proceedings of the PDPTA’99, June 28-July 1, 1999,
Las Vegas, USA, 1999.

[13] QualNet home page. http://www.qualnet. com
[14] SPEEDES home page. http://www.speedes.com
[15] SSFNet home page. http://www.ssfnet.org
[16] J. Steinman. Scalable parallel and distributed military

simulations using the SPEEDES framework.
ELECSIM’95, 2nd Electronic Simulation Conference,
Internet, May-June, 1995.

[17] A. Varga. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’2001). June 6-9, 2001. Prague,
Czech Republic, 2001.

[18] A. Varga, Y. A. Şekercioğlu, and G. K. Egan. A
practical efficiency criterion for the null message
algorithm. In Proceedings of the European Simulation
Symposium (ESS2003), Oct. 2003, Delft, The
Netherlands. Society for Computer Simulation, 2003.

[19] Y. A. Şekercioğlu, A. Varga, and G. Egan. Parallel
simulation made easy with OMNeT++. In Proceedings
of the European Simulation Symposium (ESS2003),
Oct. 2003, Delft, The Netherlands. Society for
Computer Simulation, 2003.

[20] G. Lencse. Parallel simulation with OMNeT++ using
the Statistical Synchronization Method. In Proceedings
of the 2nd OMNeT++ Workshop, pp. 24—32, Berlin,
2002.

[21] I. Dietrich and F. Dressler. On the lifetime of wireless
sensor networks. ACM Trans. on Sensor Networks,
5(1):1–39, 2009.

[22] R. Cuevas, A. Cabellos-Aparicio, A. Cuevas, J.
Domingo-Pascual and A. Azcorra. fP2P-HN: A P2P-
based route optimization architecture for mobile IP-
based community networks. Computer Networks,
53(4):528–540, 2009.

[23] H. Wang, N. Agoulmine, M. Ma, Y. Li and X. Wang.
Network Lifetime Optimization by KKT Optimality
Conditions in Wireless Sensor Networks. Wirel. Pers.
Commun., 49(2):179–196, 2009.

[24] J. Glaser, D. Weber, S. Madani and S. Mahlknecht.
Power aware simulation framework for wireless sensor
networks and nodes. EURASIP J. Embedded Syst.
2008(3):1–16, 2008.

[25] K. S. Kim, D. Gutierrez, F. An and L. Kazovsky.
Design and Performance Analysis of Scheduling
Algorithms for WDM-PON under SUCCESS-HPON
Architecture. IEEE/OSA J. Lightwave Techn.
23(11):3716–3731, 2005.

[26] Proceedings of the 1st International Workshop on
OMNeT++. Marseille, France: ICST, 2008.

[27] Proceedings of the 2nd International Workshop on
OMNeT++. Rome, Italy: ICST, 2009.

 Volume E-1, No.1(5)

 - 14 -

AUTHOR BIOGRAPHIES

András Varga received his
M.Sc. in computer science with
honors from the Technical
University of Budapest, Hungary
in 1994. He is the author of the
OMNeT++ open-source network
simulation tool currently widely

used in academic and industrial settings. He worked
for several years as software architect for Encorus
(formerly Brokat Technologies) before founding
OpenSim Ltd that develops OMNeT++, and
Simulcraft Inc. that provides commercial licenses and
services for OMNeT++ worldwide. He is currently
working towards PhD, his research topic being large-
scale simulation of communication networks.
Between February and September 2003, and between
February and June 2005 he visited CTIE at Monash
University (Melbourne, Australia) to participate in
parallel simulation research.

 Ahmet Y. Şekercioğlu is a
researcher at the Centre for
Telecommunications and
Information Engineering (CTIE)
and a Senior Lecturer at Electrical
and Computer Systems
Engineering Department of

Monash University, Melbourne, Australia. Between
1998 and 2006 he also held the position of Program
Leader for the Applications Program of Australian
Telecommunications Cooperative Research Centre
(ATcrc, http://www.atcrc.com). He completed his
PhD degree at Swinburne University of Technology,
Melbourne, Australia (2000), MSc (1985) and BSc
(1982) degrees at Middle East Technical University,
Ankara, Turkey (all in Electrical Engineering). He has
lectured at Swinburne University of Technology for 8
years, and has had numerous positions as a research
engineer in private industry. His recent work focuses
on development of tools for simulation of large-scale
telecommunication networks. He is also interested in
application of intelligent control techniques for
multiservice networks as complex, distributed
systems.

Research, Development and Application on Information and Communication Technology

 - 15 -

Abstract: In this paper, we propose the improved
Statistical Synchronization Method (SSM-T) for
parallel discrete event simulation. Criteria are given for
the time-driven approach (SSM-T). It is proven that the
level of the output error can be guaranteed. SSM-T is
implemented in the OMNeT++ discrete event simulation
tool, which is a useful and widespread framework for
creating various simulation models to evaluate the
performance of telecommunication networks. Case
studies have been performed, which shows that SSM-T
is a very efficient synchronization method for the
parallel simulation of communication networks.

Keywords: Paralleldiscrete event simulation, statistical
synchronization, applicability criteria, efficiency,
accuracy.

I. INTRODUCTION

Discrete event simulation is a powerful method in
the performance analysis of communication networks,
digital circuits and computer systems. The simulation
of large and complex systems requires a large amount
of memory and computing power that is often
available only on a supercomputer. Efforts were made
to use clusters of workstations or multiprocessor
systems instead of supercomputers, as this would be
much more cost effective.

The simulation of large and complex networks is
often a practical need when they are designed or
analyzed. In many cases, the only option for the
execution of the simulation is the use of a cluster of
workstations. Due to the nature of the algorithm of the
event driven discrete event simulation the
parallelization is not an easy task.

The conventional synchronization methods for
parallel discrete event simulation (e.g, conservative,
optimistic) [2] use event-by-event synchronization
and they are unfortunately not applicable to all cases,
or do not provide the desirable speedup. The
conservative method is efficient only if certain strict
conditions are met. The most popular optimistic
method "Time Warp" [3] often produces excessive
rollbacks and inter-processor communication.

The Statistical Synchronization Method (SSM) [16]
is a promising alternative to the conventional
synchronization methods for parallel discrete event
simulation. Unlike the conventional synchronization
methods, SSM does not exchange individual messages
between the segments but rather the statistical
characteristics of the message flow. Actual messages
are regenerated from the statistics at the receiving side
(further explanations will be given later). SSM claims
to be less sensitive to communication delay and it
requires less network bandwidth than event-by-event
methods. Nevertheless, it is not accurate in the sense
that an event that occurred in one segment of the
system does not have an immediate influence on
another segment. For this reason, the method cannot
be applied in some simulations, for example in the
case of digital circuits but remains feasible in other
classes of simulation such as the performance
estimation of the next generation networks. An
addition advantage of SSM is that it is relatively easy
to extend existing non-parallel simulation software for
use with SSM, which is not necessarily true for other
synchronization methods.

An Efficient Statistical Synchronization
Method For Parallel Simulation

Gábor Lencse
Department of Telecommunications

Széchenyi István University, Győr, Hungary
Email: lencse@sze.hu

 Volume E-1, No.1(5)

 - 16 -

In this paper, we propose the improved Statistical
Synchronization Method (SSM-T) for parallel discrete
event simulation. SSM-T is implemented in the
OMNeT++ discrete event simulation tool
[8,10,18,19], which is a useful and widespread
framework for creating various simulation models to
evaluate the performance of telecommunication
networks.

 The remainder of this paper is organized as follows:
after a brief introduction to SSM and SSM-T in
Section II, the applicability criteria for SSM-T are
given in an informal way in Section III. They are
formalized in Section IV together with a proof that the
required level of the output error can be guaranteed by
satisfying the criteria. Next in Section V, we show
positive and negative examples to give a better insight
of the criteria. Afterwards in Section VI, we present
the conditions for a good speed-up. Finally in section
VII, we give the conclusions of the paper.

II. THE STATISTICAL SYNCHRONIZATION
METHOD

A. The Original SSM

For those not familiar with SSM, a short summary
of the Statistical Synchronization Method [16] is
given here.

Similarly to other parallel discrete event simulation
methods, the model to be simulated - which is more or
less a precise representation of a real system - is
divided into segments, where the segments usually
describe the behavior of functional units of the real
system. The communication of the segments can be
represented by sending and receiving various
messages. For SSM, each segment is equipped with
one or more input and output interfaces. The messages
generated in a given segment and to be processed in a
different segment are not transmitted there but the
output interfaces (OIF) collect statistical data of them.
The input interfaces (IIF) generate messages for the
segments according to the statistical characteristics of
the messages collected by the proper output interfaces
(Fig. 1).

The segments with their input and output interfaces
can be simulated separately on separate processors,
giving statistically correct results. The events in one
segment have not the same effect in other segments as
in the original model, so the results collected during
SSM are not exact. The precision depends on the
partitioning of the model, on the accuracy of statistics
collection and regeneration, and on the frequency of
the statistics exchange among the processors.

messages
statistics

OIF IIF
messages
re-generated

segment A segment B

Figure 1: An OIF - IIF pair

B. SSM-T: Refinement of SSM

The original SSM does not explicitly state when the
OIF’s should send their statistics to the appropriate
IIF’s. The results of [6,7] would suggest that the
statistics collection must be continued until the sample
contains the required number of observations, then the
statistics should be sent and the statistics collection
should be restarted. This was called SSM-C (the
counter driven approach) in [5]. In that paper, SSM-T
(the time driven approach) was proposed for parallel
simulation, which works as follows.

Using the notations of Fig. 1, at the beginning of the
simulation the OIF of segment A must tell the IIF of
segment B at what virtual time it will send the first
statistics. This is t1 in Fig. 2. In this figure the thin
horizontal lines show the wall-clock (real) time of the
processors executing the segments and the thick lines
are the virtual times of the segments. Segment B takes
into consideration the first statistics from segment A
at t1 virtual time. It is done in the following way: In
the figure, segment B receives the first statistics from
segment A at tx (according to its own virtual time) and
as tx<t1, segment B schedules the arrival of the
statistics for t1. The other possibility is shown on the

Research, Development and Application on Information and Communication Technology

 - 17 -

example of t2. Segment B has not received the
statistics until t2, and it has no more events scheduled
with less than or equal time stamp, so the execution of
the simulation of segment B is suspended until the
statistics arrive from segment A. Then segment B
receives the statistics and the execution resumes.
Segment B always knows at what virtual time to
expect the next statistics, because Segment A always
includes the virtual arrival (=sending) time of the i-th
statistics in the (i-1)th statistics package. We called
this solution loose synchronisation [5]. This method
makes it possible for the simulation of the segments to
run independently on separate processors in the vast
majority of time and therefore it may result in
excellent speed-up.

0 t1 t2

t1 t2 t2'tx

statistics statistics

segment B

segment A

0

Figure 2: The operation of SSM-T.
See the text for explanation.

III. THE APPLICATBILITY CRITERIA OF
SSM-T

SSM-T can be applied and produces meaningful
results if the following conditions are met:

(a) The simulated system can be divided into
segments so that not the individual messages but
only their statistical characteristics are important
between the segments.

(b) A small error in the approximation of the
statistical characteristics of the message flow
causes small error in the output of the simulation
that depends only on the measure of the
approximation error.

(c) The parameters of the model may change during
the simulation but the changes in the statistical

characteristics of the message flows between the
segments are rare enough.

 Note that a change in the statistical characteristics of
the message flow is only propagated to other segments
when the statistics package is actually sent over by the
OIF. The fourth condition is that this delay causes
error in the output of the simulation only during the
delay and/or at most during an additional time interval
with a length proportional to the delay.

IV. THE OUTPUT ERROR OF SIMULATION
WITH SSM-T

Let us denote the concerned statistical
characteristics of the message flow by the random
variable X and its approximation by X*. The error of
the approximation is also a random variable: hX=X*-X.
The observed output of the simulation is denoted by
O. The hX error of the approximation causes hO = O*-
O error in the output. Condition (b) is defined
formally as follows:

(b') hO = f(hX) for some f, and ∀ε>0 ∃δ: |hX|<δ ⇒
|hO|<ε.

Note, that sometimes the following conditions may
be enough:

(b'') hO=f(hX) for some f, and ∀ε>0 ∃δ: E{hX}<δ
⇒ E{hO}<ε, where E{} is the expected value
of the random variable.

Let us denote the number of observations in a
sample by n. ∀δ>0 ∃N: n>N ⇒ |hX|<δ. The value of N
depends on both the required value of δ and the
convergence speed of the statistics collection method
used. See [6] for more details about the convergence
speed of some well-know statistics collection
methods.

In the stationary case we can guarantee |hO|<ε with
the appropriate choice of N. Let us consider the
transients in the system. If the distribution of the
random variable X changes in segment A at tc in the i-
th sample collection interval, the exact new statistics
arrive at segment B at the ti+1 synchronization point of

 Volume E-1, No.1(5)

 - 18 -

virtual time (Fig. 3). If TN is an upper bound for the
length of any (ti+1-ti) interval, then the length of the
transient TTR<2TN.

Condition (d) says that the transient may cause
output error during the TTR time of the transient, plus
maximum ceTTR time after it. (ce is an appropriate
constant). Thus the output of the simulation may
contain an error due to the transient caused by SSM-T
less than ce’TN time, where ce’=2(1+ce).

TTR: the length of the transient
caused by SSM-T

ti-1 ti+1ti

the i-th sample is
collected in segment A

the (i+1)th sample is
collected in segment A

segment B receives
the exact statistics

X changes here

Figure3: The transient caused by SSM-T

Let us denote the time elapses from the end of the
ce’TN time interval to the next change of X by TQST ,
the time of the quasi stationary state. The empirical
meaning of "rare enough" in condition (b) is: ce’TN
<< TQST. Let us make it a bit more formal: HO is an
upper bound for the absolute value of the output error
during the transient caused by SSM-T. Now, we show
that hO <ε can be ensured. Let us choose δ’: |hX|<δ’

⇒ |hO|<½ε during the TQST time period. Let NTR and
NQST denote the number of the collected output
statistics values during the ce’TN and the TQST time
periods, respectively. The before mentioned "rare
enough" condition is:

(c') N
N H

NQST
TR O

TR≥ −
2

ε

The average output error is:

hO ≤ N H
N N

N h
N N

TR O

QST TR

QST O

QST TR+
+

+
 ≤ ½ε+½ε ≤ ε

However, the condition for NQST is quite strict, and
it is not always necessary. We have eliminated the
error of the output of the simulation by averaging very

many values. If we know the time of the changes of X
in advance, or if we can detect the change, we can just
omit the NTR number of output statistics values with
error. By doing so, a lot of virtual time (and therefore
simulation execution time too) may be saved, because
in this way only the ce’TN virtual time is wasted, and
the requirement for NQST is just the same as it is in the
case of the traditional event-by event synchronization:

(c'') NQST must be large enough to collect the
statistics of the output of the simulation with
the required accuracy.

The proportion of the wasted ce’TN and useful TQST
virtual time is very important. The ce’TN virtual time
is used up just to eliminate the transient caused by
SSM-T. In addition to its execution time comes the
execution time wasted due to communication
overhead between the processors executing the
segments. However, if both of them are low compared
to the execution time of TQST and the model of the
simulated system was partitioned in the way that the
load of the executing processors is nearly balanced,
our simulation may produce a good speed-up.

V. EXAMPLES FOR THE APPLICATION OF
SSM-T

A. Satellite Power Consumption - APositive
Example

Let us consider the following example. A hurricane
forecasting satellite collects data of the atmosphere
and after some preprocessing, it sends them to the
Earth for evaluation. The whole system is built up by
three major functional units:

1. The Intelligent Measurement System controls the
sensors and evaluates their signals, collects and
preprocesses measurement data. Its output is a
variable rate packet data flow. The packet rate
depends on environmental conditions such as the
state of the atmosphere, hurricane suspicious
observations, etc.

2. The Data Transmission System carries the data
packets from the Intelligent Measurement System

Research, Development and Application on Information and Communication Technology

 - 19 -

to the Data Evaluation System on the Earth. The
Data Transmission System contains a radio link
downwards and another one upwards. The data
sent through the downlink is acknowledged on the
uplink. The transmission power is controlled in
the function of the packet loss ratio, so the power
consumption/bit depends on the environmental
conditions (state of the atmosphere, orbit
deviations, etc) too. To save power, the carrier of
the downlink is turned off when there is no
transmission.

3. The Earth Data Evaluation System is responsible
for the final evaluation of the collected
measurement data.

Figure 4 shows the block diagram of the physical
system.

Our task is to determine the behavior of the power
consumption of the Satellite Radio System to be able
to tell the solar cell and battery requirements. The
power consumption depends on both the packet rate
from the Intelligent Measurement System and the
radio channel conditions.

Data Packets

Satellite

Satellite Radio System

Downlink Uplink

Data Packets

Intelligent Measurement System

Earth Radio System

Earth Data Evaluation System

Earth System

Figure 4: The satellite data collection system

Both quantities depend on environmental conditions
that are too complex for an analytical treatment. Some
of the environmental conditions (e.g. atmosphere)
influence both the packet rate and the required

transmission power, so they cannot be simulated
independently. However, it is known from earlier
experiments that the environmental conditions change
very slowly compared to the data packet rate, that is
typically millions of data packets are transmitted
between two consecutive significant changes in the
environmental conditions. It is also known that the
channel capacity is more than twice as much than it is
necessary for the maximum packet rate, so there is
practically not buffering except that the packets are
stored (to be able to retransmit them) until an
acknowledgement is received. We propose the
following parallel simulation:
• The Earth Data Evaluation System is omitted as it

has no influence for the investigated power
consumption.

• The remainder of the system is divided into two
segments: the Intelligent Measurement System and
the Data Transmission System, they are simulated
parallel on two processors. The segments model
those environmental conditions that are relevant to
their operation.

• The two segments of the model are executed by
two processors. SSM-T is applied between the two
segments. The packet inter-arrival time statistics
are collected by the OIF of the Intelligent
Measurement System and the result is sent to the
IIF of the Data Transmission System. The packet
data flow is regenerated by the IIF of the Data
Transmission System.

Figure 5 shows the block diagram of the simulation
model.

The applicability criteria of the SSM-T are satisfied:
(a) At the boundaries of the two segments, not the

individual packets but only the average packet
rate is important in the point of view of the power
consumption.

(b) A small error of the estimation of the packet rate
(or the distribution of the packet inter-arrival
time) causes a small error in the calculation of the
power consumption and depends only on the

 Volume E-1, No.1(5)

 - 20 -

measure of the error, not the actual value of the
packet rate.

(c) Significant changes are rare enough to make the
necessary number of observations in quasi
stationary state.

(d) As there is practically no buffering, the delay of
the changes of the packet rate causes error only
until the arrival of the new perfect statistics.

Data Packets

Intelligent Measurement System

Data Transmission System

Satellite Radio System

Downlink Uplink

Earth Radio System

Figure 5: The simulation model of
the satellite data collection system

B. Negative Examples

The first example is the simulation of an FDDI [1]
ring. If the ring is divided into two (or more) segments
and the segments are simulated by separate
processors, the explicit passing of the token cannot be
replaced by the arrival time statistics of the token
collected at the segment boundaries. This would be a
violation of the Media Access Control protocol
resulting in ring recovery (token loss, duplicate tokens
etc). Here SSM-T cannot be applied, because
condition (a) is not satisfied. Our second negative
example is derived from the before mentioned
positive one. Let us modify the system described there
in the following way:

The Data Transmission System contains two
downlinks with no transmission power control. The
unacknowledged packets are retransmitted until an
acknowledgment arrives for the packet.

The primary downlink is always operational and the
secondary works only if it is necessary due to high
packet rate and poor channel conditions (that is, a high
number of packet retransmissions). The earth station

does not have burst demodulators, so when the second
carrier is put into operation, there is a significant
synchronization overhead. For this reason, the carrier
is not switched off immediately after transmitting a
packet, but only after a certain delay. This also means
that even a few packets on the secondary link may
result in significantly increased power consumption.

For any given channel conditions one can calculate
what packet rate can completely exhaust the capacity
of the primary downlink. An arbitrarily small error in
the estimation of the packet rate from the Intelligent
Measurement System can cause a serious error in the
output of the simulation if the packet rate is close
enough to the calculated critical rate. Now, condition
(b) is not satisfied.

C. Two Interconnected FDDI Rings - Another
Positive Example

In [5] SSM-T was used in the simulation of the
FDDI backbone of the Technical University of
Budapest. This network consists of two rings: The
Northern Ring is a university-wide network and
consists of 15 FDDI stations interconnected by 5
wiring concentrators.

The Southern Ring is the backbone of the Faculty of
Electrical Engineering and Informatics, and being
smaller ring of 7 FDDI stations. The two rings are
interconnected by a router. The topology of the
network and the cable lengths were taken from the
real system. The load used in the simulation model
came from measurements taken on the real FDDI
rings.

First, a very accurate simulation of the network was
performed. Then, SSM-T interfaces were inserted
between the two FDDI rings and the simulation was
performed with the same parameters as before.

The utilization of the rings were measured in both
cases. It was found that the utilization values were
close to each other in the two simulations. More
detailed discussion of the experiments can be found in
[5].

Research, Development and Application on Information and Communication Technology

 - 21 -

VI. CONDITIONS FOR A GOOD SPEEP-UP

In the practical application of SSM-T, the length of
the virtual time interval while the OIF collects a
statistics package is very important. There are three
points:
1. The time interval should be large enough to

collect a sample that is based on enough
observations to produce an estimation with the
required accuracy.

2. The time interval should be short enough to bound
the length of the transient caused by SSM-T.

3. The frequency of the statistics exchange should
not be too high to produce good speed up.

The first two conditions should be evident for the
reader, but the third one requires some explanations.
Until now, the simulation with SSM-T was
independent from the execution environment.
However, the main aim of SSM-T is to produce both
good results and good speed-up. Thus, the overhead
caused by the statistics exchange is very important.
Let us consider this overhead.

The statistics transmission directed graph is defined
as follows:
• The nodes are the segments of the simulation

model,
• The (directed) edges are the segment to segment

routes of statistics transmission.
If there are no directed loops in the graph then the

simulation may work as a pipeline with infinite
buffers between the stages. However, if there is a
directed loop in the graph the virtual times of the
segments of this loop are synchronized in some way.
Let us consider the simplest example: there are two
segments and they send statistics to each other. Let
they exchange their statistics every T virtual time
interval. The segments are executed by two processors
A and B. The processors are identical and they do not
have any other load. The execution time of the T
virtual time is τA and τB. The time of communication
is denoted by τC. This time includes the time of data
packing and conversion to the network data format

(e.g. XDR, if necessary) data transmission time and
propagation delay plus data conversion from network
format (if necessary) and unpacking. The execution
time of a T virtual time interval with SSM-T is:

τ2=max(τA,τB)+τC (1)

The overhead of the statistics collection and
regeneration done by the IIF's and OIF's is denoted by
τIIF τOIF. These are included in τA and τB, so they must
be subtracted in the calculation of the execution time
of the traditional simulation. The execution time of a
T long virtual time interval using traditional uni-
processor simulation is:

 τ1=τΑ−τOIF-A−τIIF-A+τΒ−τOIF-A−τIIF-A+τC (2)

Let us group the I/O interfaces overhead into τIF.

 τIF=τOIF-A+τIIF-A+τOIF-A+τIIF-A (3)

The speed-up is:

 s A B IF

A B C

=
+ −

+
τ τ τ

τ τ τmax(,)
 (4)

This value can be close to 2 if τA≈τB, τC<<τA and
τIF<<τA, that is the load of the processors is well
balanced, the communication overhead, and the
overhead caused by the statistics collection and
message regeneration are small.

In a large (communication) system there are usually
multiple points where the SSM-T applicability criteria
are satisfied. It means that the insertion of the SSM-T
interfaces to these points will not cause significant
degradation of the accuracy of the results. Out of these
points, the simulationist must carefully select those,
that separate the model to segments of similar
complexity, so that the computing powers required by
the simulation of the segments are in the same order.

When selecting the statistics collection method it is
worth considering its algorithmic complexity [6]. An
interesting new density estimation method, k-split
[17] may also be used in SSM OIF's. And last but not
least the frequency of the statistics exchange should
not be higher than it is required. In earlier experiments
on simulating two interconnected FDDI rings by two

 Volume E-1, No.1(5)

 - 22 -

processors using SSM-T [5], we achieved 1.75, 1.86
and 1.91 speed-up depending on the frequency of
statistics exchange.

The existence of weaker criteria for the
applicability of SSM-T is also a question of
interest.

VII. CONCLUSIONS

The applicability of the modified Statistical
Synchronization Method (SSM-T) was studied.
Criteria were given for the applicability of SSM-T in
parallel discrete event simulation. We have proven
that the small level of output error of the parallel
simulation using SSM-T compared to the uni-
processor simulation without SSM-T can be
guaranteed if the criteria are satisfied.

We showed a real life example where the
applicability criteria are satisfied and SSM-T can be
applied. We gave negative examples too. We
presented the conditions when the application of
SSM-T results in a good speed-up.

The results confirm that SSM-T is a very efficient
synchronization method in the parallel simulation of
the communication networks. One interesting step of
the current work is to combine the Traffic Flow
Analysis (TFA) [9] and the detailed event-by-event
simulation [11] for the parallel execution of the
combined system [12, 14, 15].

REFERENCES

[1] ANSI X3.139. Fiber Distributed Data Interface (FDDI)
Token Ring Media Access Control (MAC). American
National Standards Institute, New York, NY, 1987.

[2] R. M. Fujimoto, "Parallel Discrete Event Simulation."
Communications of the ACM 33, no 10, 31-53, 1990.

[3] D. Jefferson et al., "Distributed Simulation and the
Time Warp Operating System." Proceedings of the 12th
SIGOPS - Symposium on Operating System Principles,
1987. pp. 73-93.

[4] G. Lencse, "Efficient Simulation of Large Systems -
Transient Behaviour and Accuracy" Proceedings of the
1997 European Simulation Symposium (ESS'97)

(Passau, Germany, Oct. 19-23, 1997.). SCS Europe,
660-665.

[5] G. Lencse, "Efficient Parallel Simulation with the
Statistical Synchronization Method" Proceedings of the
Communication Networks and Distributed Systems
Modeling and Simulation (CNDS'98) (San Diego, CA.
Jan. 11-14, 1998.). SCS International, 3-8.

[6] G. Lencse, "Statistics Collection for the Statistical
Synchronisation Method" Proceedings of the 1998
European Simulation Symposium (ESS'98)
(Nottingham, UK. Oct. 26-28, 1998.). SCS Europe, 46-
51.

[7] G. Lencse, “Applicability Criteria of the Statistical
Synchronization Method” Proceedings of
Communication Networks and Distributed Systems
Conference (CNDS'99), (San Francisco, CA, USA,
January 17-20, 1999.) SCS, 159-164

[8] G. Lencse, “Design Criterion for the Statistics
Exchange Control Algorithm used in the Statistical
Synchronization Method” Proceedings of the 32nd
Annual Simulation Symposium (San Diego, CA, USA,
April 11-15, 1999.) IEEE Computer Society, 138-144

[9] G. Lencse, “Traffic-Flow Analysis for Fast
Performance Estimation of Communication Systems”
Journal of Computing and Information Technology
Vol. 9, No. 1, (2001.) 15-27.

[10] G. Lencse, "Parallel Simulation with OMNeT++ using
the Statistical Synchronization Method" Proceedings of
the 2nd International OMNeT++ Workshop (Technical
University Berlin, Berlin, Germany, Jan. 8-9, 2002.)
24-32.

[11] G. Lencse, "Combination and Interworking of Traffic-
Flow Analysis and Event-Driven Discrete Event
Simulation" Proceedings of the 2004 European
Simulation and Modelling Conference (ESM'2004)
(Paris, France, Oct. 25-27, 2004.) EUROSIS-ETI, 89-
93.

[12] G. Lencse, "Speeding up the Performance Analysis of
Communication Systems" Proceedings of the 2005
European Simulation and Modelling Conference
(ESM'2005) (Porto, Portugal, Oct. 24-26, 2005.)
EUROSIS-ETI, 329-333.

[13] G. Lencse and L. Muka, "Convergence of the Key
Algorithm of Traffic-Flow Analysis" Journal of
Computing and Information Technology, Vol. 14, No.
2, (June 2006.) pp. 133-140.

Research, Development and Application on Information and Communication Technology

 - 23 -

[14] G. Lencse and L. Muka, “Combination and
Interworking of Four Modelling Methods for
Infocommunications and Business Process Systems”
Proceedings of the 2007 Industrial Simulation
Conference (ISC'2007) (Delft, The Netherlands, June
11-13, 2007.) EUROSIS-ETI, 350-354.

[15] L. Muka and G. Lencse, “Decision Support Method for
Efficient Sequential and Parallel Simulation: Time
Decomposition in Modified Conceptual Models”
Proceedings of the 2007 European Simulation and
Modelling Conference (ESM'2007) (Malta, Oct. 22-24,
2007.) EUROSIS-ETI, 574-581.

[16] Gy. Pongor, "Statistical Synchronization: a Different
Approach of Parallel Discrete Event Simulation"
Proceedings of the 1992 European Simulation
Symposium (ESS 92) (The Blockhaus, Dresden,
Germany, Nov. 5-8, 1992.) SCS Europe, 125-129.

[17] A. Varga, "K-split – On-Line Density Estimation for
Simulation Result Collection". Proceedings of the
European Simulation Symposium (Nottingham, UK.
Oct. 26-28, 1998.) SCS Europe, 41-45.

[18] Y. A. Sekercioglu, A. Varga, and G.K. Egan, (2003),
"Parallel simulation made easy with OMNeT++"
Proceedings of the European Simulation Symposium
(ESS’2003), (Delft, The Netherlands, Oct. 2003.) SCS,
2003.

[19] M. Kozlovszky, Á. Balaskó and A. Varga, "Enabling
OMNeT++-based simulations on Grid Systems".
Proceedings of the 2nd International Workshop on
OMNeT++ (OMNeT++ 2009), (Rome, Italy, Mar.
2009.) ICST, 2009.

[20] http://www.omnetpp.org
[21] http://www.omnest.com.

AUTHOR BIOGRAPHIES

Gábor Lencse received his M.Sc.
in electrical engineering and
computer systems at the
Technical University of Budapest
in 1994 and his Ph.D. in 2001.
The area of his research is

(parallel) discrete event simulation methodology.
He is interested in the acceleration of the
simulation of info-communication systems. Since
1997, he has been working for the Széchenyi
István University in Győr. He teaches computer
networks and networking protocols. Now, he is an
Associate Professor. He is a founding member of the
Multidisciplinary Doctoral School of Engineering,
Modelling and Development of Infrastructural
Systems at the Széchenyi István University. He does
R&D in the field of the simulation of communication
systems for the Elassys Consulting Ltd. since 1998.
Dr Lencse has been working part time at the Budapest
University of Technology and Economics (the former
Technical University of Budapest) since 2005. There
he teaches computer architectures.

 Volume E-1, No.1(5)

 - 42 -

I–frame data ratio of the MPEG–4 video stream is
PI=51%, hence the I–frame data bandwidth
requirement is about 150kbps.

a) I–frame distribution on the interfaces

b) P–frame distribution on the interfaces

c) B–frame distribution on the interfaces

Figure 5: Different frame type distributions
 in the interface buffers

As the results show, I–frame data can be delivered
on the first two interfaces (100kbps+80kbps) when
the proposed content–based selective packet
distributor algorithm is used (Figure 5. a). Most of
the P–frames were delivered on the 3th interface,
while the B–frames were transferred on the less
reliable channels. Due to this ordered packet
delivery, the number of lost packets belonging to I–
frames is estimated to be significantly lower then the
number of other frame packet losses.

The observed video quality highly depends on the
number of lost packets and the packet content. In
order to analyze the behavior of the proposed
multipath delivery method we have examined the
packet loss of different frame types . The overall
packet loss ratio was also measured, which is the
average of the I–, P– and B–frame packet loss ratios.
The results are presented in 0Similarly to the
previous measurements the heap up buffer size was
set to 80 frames.

Figure 6: Total and I–, P–, B–frame
 type data packet loss ratios

As we expected, the total number of packet losses
was equal using the continuous packet distributor
method and the selective one. In spite of the
similarity, the number of I–frame data packet losses
was significantly lower when the proposed interface
selection algorithm was used. In case of the
continuous algorithm, the loss probabilities of
different types of frame data were nearly identical.
However, by protecting the I–frame data, the error

