
Research, Development and Application on Information and Communication Technology

 - 59 -

Abstract: In this article we represent two novel
applications that make extensive use of the peer-to-peer
communication method. Dolphin is a file sharing system
with improved reliability and searching efficiency
compared to other popular file sharing applications.
Komondor is a peer-to-peer based security application,
a network intrusion detection system that relies on the
collaboration of network hosts. These two applications
base their speed, stability and robustness on the
application level network they create.

Keywords: Peer-to-peer, P2P, overlay network,
metadata, file sharing, reliability, collaboration, search
method.

I. INTRODUCTION

The Internet is a shared resource and a cooperative
network, which is composed of millions of hosts
around the world. Nowadays, people use ever more
applications that are capable of using the network [6].

Besides antivirus applications, file sharing utilities
are the most popular type of software, which is
downloaded by the users of the Internet at most. No
surprise that a significant part of the Internet traffic is
generated by peer-to-peer (P2P) services. The main
purpose of the file sharing systems is that they search
files shared by the users on the basis of some
algorithm and also manage the downloading of them.

In this article we represent two novel peer-to-peer
applications, which make extensive use of the P2P
communication model. The first one is Dolphin, a
community builder application that uses metadata-
based keyword searches for files. The second one is

Komondor, which is a network intrusion detection and
prevention system relying on the collaboration of
participants.

When designing Dolphin, we focused on the search
based on the metadata of the shared files, which
notably reduces the time of the search. Metadata is
structured information that describes, locates, and
makes it easier to retrieve, use, or manage an
information resource. Metadata is frequently called
data about data or information about information [7].

 Our Komondor project focuses on the stability of
the network used to share information about intrusion
attempts and other suspicious events. The main goal
of the design is to create a P2P network being robust
enough to deal even with attacks targeted directly
against it.

II. BACKGROUND

Components of the application level networks
(ALN’s) are the services operating on the different
levels of the network, which control the
communication session of certain networked
application with its application level protocol.
Sometimes they are called overlay networks.

The creative individuals of the ALN are called
nodes or peers because they are responsible for
building and maintaining the network equally. They
can either be servers, when sharing resources with
others or they can be clients as well [2].

A. The software model of the overlay

Novel Applications of the Peer-to-peer
Communication Methodology

L. L. Tóth, Z. Czirkos, G. Hosszú, F. Kovács
Department of Electron Devices

Budapest University of Technology and Economics
Email: hosszu@eet.bme.hu

 Volume E-1, No.1(5)

 - 60 -

In contrast to common knowledge, peer-to-peer is a
technology, not an application. Usually P2P
functionality is only a part of the application, like the
graphical user interface or the database functionality
[5].

Real P2P networks and applications are distributed
systems without any centralized control or
hierarchical organization, where the software running
at each node is equal in functionality. A review of the
features of recent P2P applications yields a long list:
redundant storage, permanence, selection of nearby
servers, anonymity, search, authentication, and
hierarchical naming. Despite this rich set of features,
the core operation in most P2P systems is efficient
location of data items [10].

Figure 1: Model of P2P applications

Fig.1 shows to architecture of P2P applications. The
task of the P2P carrier is the overlay creation,
administration and file localization. The middleware
maintains an assistant scope of duties, for example the
selection of correct peers based on their distance and
network link quality (the correction of P2P
performance).

B. Centralized overlays

As a start of the network-based collaboration in
1996 the application SETI@Home was launched. It is
a scientific experiment that uses Internet-connected
computers in the Search for Extra Terrestrial
Intelligence. SETI@Home distributes a screen saver
based application to users that engages various signal
analysis algorithms to process the centrally distributed
data of radio-telescopes. At the time of writing, it had
signed up more than three million users and had used
over a million years of CPU time. The client software

contacts a server in order to download data for
processing and then processes them until the problem
is solved and after sends the results back to the server.
Should this processing fail, the data segment is
assumed to be lost and therefore is ignored [11].

Napster was another one of the first P2P systems, as
an example of a so-called hybrid system. Napster's file
sharing is decentralized: one Napster client downloads
a file directly from another Napster client's computer.
At the same time the directory of files is centralized,
with the Napster servers answering search queries and
brokering client connections. This hybrid approach
scales well: the indexing of files is efficient and uses
low bandwidth, and file sharing is carried out on the
edges of the network [6].

The advantage of such architecture is that it is fast
and efficient until the capacity of the service server is
reached. The search requests require relatively small
network traffic. The bottleneck of Napster is however
the central indexing server. The most serious
shortcoming is that the working of the whole system
will stop when that server fails [3].

C. Decentralized, non-structured overlays

The next generation of the P2P systems is
distributed, homogeneous, ‘true peer-to-peer’
architecture [5]. Its most known example is the
Gnutella network.

Gnutella was one of the first decentralized
technologies that would reshape the Internet and
reshape our way of thinking about network
applications. The traditional knee-jerk reaction to
create a hierarchical client/server system for any kind
of networked application has been reconsidered.
Decentralized technologies have many desirable
qualities, and Gnutella was an excellent proof that
such technologies, while young, are viable [4].

In such a system, every user’s application is indeed
a peer: the nodes have completely same function. In
Gnutella, the data of a shared document is not on the
main server. Every participant knows which attributes
belong to the documents stored by him. The search

Research, Development and Application on Information and Communication Technology

 - 61 -

request for documents becomes more complicated: the
search of the given file in the network is not limited
just to the transfer of the data to the main server. One
of the nodes gets a request; then it checks if the given
document can be found there. If not, it sends it further
to the nodes recognized by him. Those also make the
same operations concerning the request.

The merits and the shortcomings are clearly visible.
The failure of one of the participants in this system or
the shutdown occurred from some other reason does
not cause any problem in the operation of the whole
Gnutella overlay. However the search will be slower
and it will generate higher traffic on the network. If
we want to have a greater chance of finding the
document by the resending the request to more nodes,
we should consider the fact that the node chosen by us
may not tolerate the network traffic needed for that.

D. Decentralized, structured overlays

In structured overlays, documents and other
resources are stored in a well defined place, so all
peers know exactly where it can be located [2]. The
advantage of these systems is the quick resource
lookup that generates only minimal network traffic.
Their shortcoming is the decreased flexibility and also
their complicated architecture. Keyword lookups,
overlay setup maintenance and other services typically
require complex algorithms. An additional problem of
these is the churn of participants – i.e. the continuous
variation, login and logout of nodes.

Structured P2P networks assign unique identifiers,
called NodeID’s to participating nodes, and store key-
value pairs. Every piece of information has a key, for
example the name of the file. This key is scrambled
with a hash function [18], which generates a
seemingly random number derived from the key. Then
these numbers are used to assign files to specific
nodes: each node stores the files that have their
names’ hash value numerically close to the unique
identifier of the node. That is why structured networks
are also called Distributed Hash Tables (DHT’s), as
for every key, it is easy to find the node, which stores

the corresponding value. This process is called
consistent hashing [10], as every node uses the same
hash function.

Examples for structured networks are CAN [17],
Chord [10], Pastry and Kademlia [16]. These are all
DHT’s, but they use different topologies and routing
mechanisms. In this context the routing means the
forwarding method of the lookup request on the
overlay.

E. Distributed hash tables

In a distributed hash table, a hash function is used to
derive a small number from a key representing some
data (the value). Information is then stored on one of
the participating peers. The application level networks
mentioned above all use hash tables to store
information, but the exact management of storage is
different due to the following three aspects (see Table
I):

TABLE 1: TOPOLOGIES OF DHT NETWORKS

Overlay
network

Metric Topology

CAN Euclidean
n-dimensional

torus

Chord Subtraction Ring

Kademlia XOR operation Binary tree

• The selection of a hash function. Most networks
use MD5 or SHA-1. The choice of a function is
not really important, as they are only used to
make data evenly distributed among the nodes.
For example, Kademlia uses SHA-1 [14].

• The selection of a metric function. A metric
defines a distance between two ID’s, so hashed
data can be assigned to specific locations, nodes
in the network. Every node stores key-value pairs
having a hash value closest to its ID, according to
the metric function. Kademlia uses the XOR
operation.

• The selection of a topology. This is closely related
to the selection of the metric function. CAN is

 Volume E-1, No.1(5)

 - 62 -

usually symbolized as an n-dimensional torus,
since it calculates the distance between identifiers
by using the Pythagorean Theorem. Kademlia is
usually represented with a binary tree. In Chord,
the peers are organized in a ring, and messages
are always sent clockwise the ring.

III. OUR NOVEL COMMUNITY SYSTEM

In a university, usually smaller groups would like to
exchange useful files – sometimes even in places,
where there is no accessible Internet infrastructure
(for example students travelling together by train). In
this case it is not possible to use heavy-duty, factory-
made file sharing software, because those are
inoperable in such situations. In contrast, our software
is reliable even under such circumstances [12].

The two main expectations, which arise from these
circumstances are:

• The system must work when the overlay fails
and even when an ad-hoc network with a few
users occurs.

• The file registering will be suitable for the
claim of the student.

According to these requirements, the software
developed by us uses the following two methods:

• Metadata based file searches – it extends the
efficiency of document lookups.

• Extends the maintenance of the network –
reliability during overlay failure.

We developed these two methods in our application.
At the conditions mentioned above, our method is
working reliably; it is also simple, supposing to have a
few clients. The developed method (which got the
name ‘Dolphin’, considering that it is reliable, handful
and user friendly) is vastly different from large file
sharing software, since the properties listed above
especially support the cooperation in the small
community.

To test our proposed solution for the problems
mentioned above, we developed a P2P file sharing
application. It allows sharing and exchanging of the

files by university students regardless of which
profession they study. It can use both centralized and
decentralized structured overlays, so it may be
categorized to be somewhere between ‘Napster’ and
‘Gnutella’.

During the designing our main goal was the
reliability. Namely, if any peer loses its connection to
the server, but has a network access, the system
should stay available. If connection is lost, it stores
the IP addresses of other nodes in a file, and starts
sending ping messages to them. If it gets an answer
from somebody it can send messages further. This
event is logged in a file that contains information
about system errors, which has been sent to the server
after the system recovery, so we can check the
incidental problems in the future.

Our new function in Dolphin is the capability of
searching files by metadata allowing fast lookups.
This information contained by metadata we call a
content-package. For example, in the library the
register contains the main information about the book
(writer, title, publication date, genre, place of storage,
date of rents, etc.). The data of register refers to the
data of the book.

There is a database on the main server, in which we
can store the data and the place of the sharing files
and also those of the file owners, too. It can store and
check all traffic information, and also error reports. As
in the Napster model, peers getting file information
can connect directly to each other. The file transfer
itself happens without the help of the main server.

Dolphin’s exclusive purpose is the sharing of
training supplements (lectures’ materials, drafts, old
tests, exams, home papers), especially documents
(*.doc, *.pdf, *.jpeg, *.bmp, *.zip, *.rar, etc). It does
not support the sharing of any other music or video
files. Until now we tried to solve this by limiting the
size of the documents shared, assuming that the size
of the documents targeted for sharing is far below 10
MBytes. By this we excluded the barter of movies and
applications from our system, since a lot of file share

Research, Development and Application on Information and Communication Technology

 - 63 -

programs exist nowadays, which can be used for the
transaction of larger files and Dolphin is not really
needed for that purpose. The size of the music files is
usually under 10 MBytes, but the sharing of these is
currently restricted by system. Certainly, only those
materials are meant to be present, which were
downloaded exclusively by their owners and are
allowed to be copied in future. We should consider
legality issue too in order to avoid the illegal file
transaction.

If a given peer logs-out or is disconnected from the
server, the system will mark the files belonging to him
and during the search it will be visible, that the peer is
off-line and that is why the files cannot be shared.
Registered users can even chat with the help of built-
in chat program. The user should accomplish further
operations while providing files meant for sharing:

b. Filename and reaching track should be
provided

c. Metadata should be also added to the file

 If after the logging in the connection with the server
breaks, then the active IP addresses downloaded
during the previous logging in are listed from a file
and search requests are being sent to these IP
addresses.

IV. THE EVALUATION OF DOLPHIN AND
FURTHER DEVELOPMENTS

For the proof of concepts presented above, we
developed the reference implementation of Dolphin in
the Object Pascal language, in Delphi. The
components Delphi provides enabled us to focus on
the realization of our P2P methods, as other usual
tasks (e.g. database connection, file downloads) are
already built in into the development environment as
components.

We want to control the reliability of the designed
method with the further survey, besides we plan to
build in some new functions too. Such new function
would for example be the quick virus control before
the data downloading.

A. The server and client functionality

If the main server is available, simple server–client
architecture evolves. Here the documents are easily
distributed: the clients are managing the human–
machine interface, file sharing, chat, searching,
downloading and personal data. The server manages
the clients, generates the appropriate SQL commands.
The MySQL server maintains the database of
documents and storage.

If the main server is not available, a client takes
over its role. It reveals its IP address to the public so
other clients can join it and download requested files.
This function comes in handy when there is no
Internet connection, but the users want to share files.

It may seem obtrusive that there is a separate query
and an executive order, since both of them are just
executive commands. However, in the case of query
the returning data should be managed. This can be
helped by the data source component, which is in the
close connection. The returning data appears directly
in the data source.

B. The set-up of the client

It clears up from the structure of the client that
incoming data is converted by data-record formation;
then depending on the control it goes towards server
or into downloading control. The transfer of the files
is achieved by the Delphi TServerSocket and
TClientSocket, both designed to let you read and write
information over a TCP/IP connection [9].

C. Function of the client

The client disposes some separate functions, which
should be represented individually. Here are these
grouped:
1. Maintenance of the data

a. Registration: The admission of a new user
and automatic logging-in after.

b. Logging-in: The activation of an existing user
in the group, which signals that the
downloading of his files is possible.

 Volume E-1, No.1(5)

 - 64 -

c. Logging-out: The inactivation of the online
user.

d. Erasure of the registration: With the help of it
not just the user disappears from the group,
but the list of the files shared by him does the
same!

2. Maintenance of the shared files
a. Modification of the file-list: Fixation of the

access path and metadata, deletion of the file
sharing; it is important, that during the
admission of the new files the user must give
the pop-up list of the metadata.

b. Update: It makes the local existing file-list
accessible even in the database so the
efficiency of the search is also raised.

3. Search
a. Search: It makes it possible to search the files

by their metadata. Applying the metadata in
the searching process a content-based lookup
method can be obtained.

4. Chat
a. This function is completely separate, whereby

active users can communicate with each other
in writing; there is the possibility of creating
the friends-list, with the help of which the
user can mark admitted users and check every
minute, which of them is active. This chatting
includes many useful features, one can chat
not just with the users, who are on the friends-
list, but also with those other members, who
are active [5].

5. User’s control
a. Every such element, which can influence the

functioning of the program, belongs here.
Practically speaking, the user can see just that
from the program.

D. Future trends of Dolphin

The Dolphin system is not just a file-sharing
service, but also community building software, in
which we would like to build in the functions listed
below. The users can leave each other a message
(mail) with an easy basic message sending functions.

The messages are stored by the central server for the
definite time if the recipient is not available and if the
recipient peer logs in, the server deliver the message
to him. We also plan to build in some other functions,
with the help of which peers can exchange some
useful information (forum), mail-lists, advertisements,
news, job offers, student jobs, University parties,
radio and flashers, which will appear on the header of
the client program as a flash messages. We also want
to create some collection of the more important study
links.

Should a peer overload the server (for example, the
vicious attack, denial of service), the server will
automatically break off the connection (approximately
in 10 minutes). The database will record if there was a
problem with a peer and thus later it can be
investigated what happened [1].

During the future developments we would like to
focus on the deeper research of the Dolphin
application. Our plans include the supply of the
graphs, which will show the performance of the
system. Furthermore we are going to improve our
method by implementing the known TCP traffic based
analysis method for handling the possible failures of
the peer-to-peer traffic [8].

V. REALIABILITY OF PEER-TO-PEER SYSTEMS

Reliability of a P2P network is directly influenced
by the dependability of the underlying network packet
transfer service. The different topologies, however,
are affected differently by packet losses and other
errors.

Most structured P2P networks, for example CAN
[17] have an exact topology. In the n-dimensional
circular torus of CAN, every node has to maintain
only a small number of connections; in a 2D example,
this number is four (up, down, left and right). Data to
be sent is forwarded (routed) on the overlay network
from node to node, finally arriving at its destination.
CAN is therefore able to use session-oriented TCP as
its transport protocol, as a node always communicates
only with its neighbors.

Research, Development and Application on Information and Communication Technology

 - 65 -

There are other structured networks, which have no
specific topology, for example Kademlia [16]. In
Kademlia, messages are not forwarded inside the
overlay (there is no routing defined), rather they are
sent directly between the source and the destination as
datagrams. The purpose of the overlay is only to find
the physical network address (IP address, port
number) of the destination node in question, and it
uses UDP for its messages. Therefore network errors
directly influence the communication between peers,
and this is especially true for specific source-
destination pairs. Permanent network errors, nodes
that cannot be reached (because they are behind a
firewall, for example) all degrade the quality and
performance of the overlay.

The availability of a specific connection can
naturally be tested by a simple ping message. Due to
network errors, information available at nodes can
sometimes be unreachable for others. The exact
distribution of errors is usually highly uneven; with
some nodes having good connectivity and others not.
This issue can be solved by the data replication. As
node ID’s are usually chosen randomly, nodes which
are close to each other in the application network
address space can be quite far from each other in the
physical address space, and even geographically.
Therefore sending messages to more than one node,
which are close to a specific destination can result in
replicating data at very different locations; almost as if
destinations were randomly chosen.

Fig. 2 shows our simulation of a random Kademlia
overlay topology. The simulated scenario was that we
tested all the participating nodes of the overlay (in this
experiment we used n=200 nodes) if they are able to
send an information message to a certain destination
node and some replication of the information message
to the closest nodes of the destination.

We did not use a real topology, since in Kademlia
there is not real topology, in fact every node can send
message to every other. But the success of the sent
message was measured by a random variable, namely

the ratio of the bad links of each participating node. In
this experiment, a replication factor of k=8 was
selected, which means that every participating node
stores its key-value pairs at eight different locations.

The ideal case is when all network connections are
functioning, and there are no errors. If there are failing
connections, senders of messages choose nodes as
destinations, which are not the eight closest ones in
the entire network, but a bit further in node identifier
address space. This can happen since peers can detect
the failing links. E.g. a node is intending to send its
message to eight peers, but it detects that the node
with the 3rd closest address is unreachable. Then it
sends its piece of information to the 9th closest node,
too.

Figure 2: Simulation of connectivity in a Kademlia overlay

On Fig. 2 the three different plots visualize network
messages arriving at destination nodes, in case of
various ratios of non-functioning network links. The
X axis shows the nodes of the overlay, they are
sequenced in the order of closeness to the destination
address. X=0 is the closest one, the higher the
sequence number on the X axis is, the further the node
denoted by the actual sequence number is from the
destination node. In other words, X=0 is the primary
destination (closest), X=1 is the secondary (second
closest), X=2 is the tertiary and so on. The Y axis
shows the number of nodes, which could reach the
destination. This is the value which is our point of

 Volume E-1, No.1(5)

 - 66 -

interest. Let us suppose that we have a key-value pair
stored in the overlay with 200 nodes, and 20% of the
links are failing. The information is stored at different
locations. We are willing to find a node, which is
accessible to almost all the nodes, so anybody can
retrieve the key-value pair. This was the fourth node
on Figure 1 for the 20% error rate simulation.

As a result of the simulation presented on Fig. 2,
even with high ratio of bad links in the overlay
network, the content replication helped to find a node,
which can store the information of the message. With
20% of failed links, the node that was only the 4th
closest to the original destination (see the horizontal
axis on Fig. 2), could still receive messages from all
other nodes dependably. In case of high number of
such experiments we found very similar results.

A. Peer-to-peer overlays in real-world networks

P2P networks are usually not that effective on the
Internet, as in a computer laboratory experiment. One
of its reasons is that many nodes participating in the
network are behind NAT (network address
translation) or firewalls. Those usually cannot receive
incoming connections, but are only able to initiate
outgoing ones [15]. That is a serious drawback in
peer-to-peer applications, where the equal role of the
participators is a fundamental requirement. Another
important fact which has influence on the operation of
an overlay in a real-world environment: a node inside
the network can have good or bad connectivity due to
the random network errors. The distribution of
network errors is similar to that in a power-law graph
[13]. In the following simulation this fact is used.

As mentioned previously, Kademlia does not have
an exact topology. To store data in the overlay, a node
is required to send FIND_NODE messages to nodes
successively closer to the destination identifier (see
[16] for an explanation of Kademlia routing
messages). The replies for these messages are IP
address, port number pairs; network addresses of other
nodes [16]. Finally, the node intending to store a data
finds out the Internet address of that node (it will be

the destination node), which has its application level
address the closest to the hashed key, and sends a
STORE request directly as a datagram. Due to the
inherent network errors the data will be sent not to the
destination node, but to some other nodes close to the
destination, depending on the actual value of the
replication.

Unlike other overlay networks like CAN, which
require nodes to maintain only a small number of
connections to neighbors, in Kademlia overlay, a node
(called peer) can send a message to anyone. If we
have e.g. n=200 nodes in a Kademlia overlay, it is
possible for a node to send a message to any other
participator peer, however, it cannot know for sure,
that its connection to the destination address will
work. The node will get the network address of the
destination, but maybe it cannot connect it, for
example because of firewall settings. This is a
problem, as data stored far away (in nodeID address
space) from the normal destination cannot be retrieved
by others: they will not know that they should request
that piece of information from that node. The most
fundamental assumption for a distributed hash table
was that every key-value pair is stored in a well
defined place.

We modeled this distribution with the number of
permanently failing links increasing quadratically,
based on the power-law graph model [13]. The ratio
for a given peer is then given by:

 ()
α

n
mc=mh ⎟

⎠
⎞

⎜
⎝
⎛⋅ (1)

where m is the sequence number of the examined
peer, n is the number of all peers (0≤m<n), α is 2 for a
quadratic distribution. c is a constant, which sets the
maximum proportion of errors (ratio of inaccessible
neighbors for a specific node). These values can be set
experimentally, and depend on the size and the actual
properties of the Internet network underlying the
Kademlia overlay. Local area networks are usually
much more dependable, than wide area networks like
the Internet.

Research, Development and Application on Information and Communication Technology

 - 67 -

This h(m) function gives the ratio of bad
connections for a given peer in case of n=200 for
various α and c values. The X axis shows the
parameter m, the Y axis shows the h(m). The function
h(m) should be a stepping function, as the result
multiplied by the number of nodes gives the number
of bad connections, and the h(m)*n product should be
an integer, since it is the number of the bad links.
Therefore this formula is estimation, as one cannot
interpret ‘0.5 links fail’, only 0 or 1, which will be
very inaccurate. On the other hand, rounding ‘10.3
links fail’ to 10 failing links is only a small error.
Fortunately, we are interested in modeling the
operation of the overlay in a heavily error prone
environment; the final equation derived in this
paragraph is not applicable for a low number of errors.
Remember that as STORE requests end up at
destinations, of which nodeID’s can be taken into
account as random variables, thanks to the properties
of hash functions, it does not really matter, which
error link ratio belongs to which node. Only the global
distribution of the node peers is important, that some
nodes can receive most of the messages, some not.

As the underlying Internet network is not perfect,
we also cannot expect the overlay to be so. But still
we can have a requirement, expressed in numeric
terms, for example 99% of all the cases we should be
able to retrieve the stored key-value pair from the
Kademlia overlay. Similarly, the original Kademlia
paper [16] gave a probabilistic guarantee for a key-
value pair being available for lookup over time.

We have the ratio of allowed errors (β=1%), and for
a lookup to be successful with a probability of 1-β, the
inequality should hold for the given node, which is
responsible for storing the key-value pair in question,
and able to answer the request. Due to the fact that the
return values of hash functions seem to be random
variable, and the probability distribution of this
random variable is practically equal distribution, (2)
must be valid for every m value in the interval [0, n].
That is why we can choose m freely, so m/n is
virtually a random number between 0 and 1. Also,

nodes chose their identifiers (nodeID) by virtually
picking a random number in the address range (due to
the properties of the hash function), so this way the
stored data always gets to randomly chosen hosts, at
least we can suppose it in the terms of simulation and
modeling.

() βmh ≤ (2)
If we solve (2), we get the ratio of nodes, which

fulfill our requirements accruing to the allowed error
ratio β. The solution of (2) if the (1) is substituted is:

 α
c
β

n
m

≤ (3)

The right side of (3) can be interpreted as a
condition which must be fulfilled. If it is, a certain
piece of information stored in the overlay can be
retrieved successfully, too. We denote the probability
that the lookup procedure is successful with P’. Since
0≤m/n<1, and randomly changes from 0 to 1
(virtually, due to the hash value), the following
equality holds for P’:

 α
c
β=P' (4)

If the Kademlia overlay implements replication k, it
has more than one, exactly k opportunities to store or
retrieve data. Practically speaking, it can choose more
than one random m number, and the probability of
correct lookups denoted with P increases. Calculating
the probability of all lookups failing, and then
subtracting that from one, we get:

 ()kP=P '11 −− (5)
which gives the probability of successful looking up a
given information despite network errors. In this
formula, k is the level of replication, the number of
nodes storing a given key-value pair.

Equation (5) can be used to estimate the necessary
replication factor k, if the ratio of network errors and
required probability of correctness is given. Fig. 3
shows the results for given error and replication
levels, with 1% failure allowed. As one can see, for
h(m)=10% of failing links for example, replication
factor of k=4 is enough to ensure correct operation

 Volume E-1, No.1(5)

 - 68 -

with probability P>0.6. This replication factor k is
essentially the same as the size of the k-buckets in
Kademlia; see [16] for a discussion. The model we
presented here can be used to determine this
configuration parameter k for such an overlay, as it is
a trade-off between dependability and induced
network traffic.

Figure3: The probability of correct lookups in Kademlia.

VI. THE NOVEL INTRUSION DETECTION
SYSTEM

Our novel network intrusion detection and
prevention system, Komondor, is built on top of a
distributed hash table. The inherent stability of such
an overlay network enables it to work even when a
significant number of network links or nodes fail –
which might be a common scenario in the life of an
intrusion detection system, as an attacker might try to
stop the detection system before conducting his real
attack.

We have chosen Kademlia to be the substrate of the
detection system. The DHT method can be used here
with the idea of IP addresses being keys and attack
reports being values stored in the overlay. Every time
a node detects a suspicious event, it hashes the IP
address of the suspected attacker. This way, the report
of the event is mapped to some other Komondor node,
and sent to it. We call the destination node of the
report the collector node. As every node uses the same
hash function, reports about the same attacker end up
at the same collector node, so that participant of the
network has all information regarding the attacker in

question. Analyzing the reports and seeing if the
events suggest a real attack, it initiates a broadcast
message over the network to notify all other
participants about the possible danger.

This system also enables nodes to detect network-
sized attacks. Experience suggests that a single lost
connection is usually caused by a link failure or some
software problem, but a big number of lost
connections always suggest a network scan. These
network scans, for example, are used by attackers to
find weak points of the network. By collecting
information from many detectors, these can be
revealed with high probability.

VII. CONCLUSION

We have developed our file sharing and
collaborating method called Dolphin. According to
the carried out test runs, this novel method is able to
support the reliable operation of the system including
maintaining its overlay network even during the
network errors and network partitions.

The improved search method is based on keywords,
where the effectiveness of the searching is context-
based. The advantage of this procedure is that the
system can search for a required data based on the
additional metadata. From the obtained results,
according to our pensiveness, we experienced that in
case of switching off the server the file search
functionality remained available, however, the
searching process naturally slowed down.

Contrary, when the server is available, the search is
very effective. The improved metadata-based search
does not need a powerful search engine that makes
possible its use in a smaller community even on an ad-
hoc network.

Our reference implementation of Komondor has
been collecting data for years. Examining the database
of detected intrusion attempts, we have concluded that
this system can be highly efficient against attacks
which are deliberate and targeted. Attackers who
have a well-defined goal usually try to break into a
system by multiple means; if any of the attacks’

Research, Development and Application on Information and Communication Technology

 - 69 -

manifestation is revealed, the whole network can be
protected. For random attacks, i.e. virus software,
other protection methods must be used.

REFERENCES

[1] Dingledine, R., Freedman, M. J., & Molnar, D. (2001).
Free Haven. In A. Oram (Ed.), Peer to Peer:
Harnessing the Power of Disruptive Technologies (pp.
102-121).

[2] Hosszú, G. (2005). Mediacommunication Based on
Application-Layer Multicast. In Dasgupta, S. (Ed.),
Encyclopedia of Virtual Communities and
Technologies (pp. 302-307). Hershey, PA: Idea Group
Reference.

[3] Jelasity, M. (2007). Peer-to-Peer Systems and Gossip
Protocols. Retrieved November 14, 2008, from
http://www.inf.uszeged. hu/~jelasity/p2p/index.html#1

[4] Kan, G. (2001). Gnutella. In A. Oram (Ed.), Peer to
Peer: Harnessing the Power of Disruptive Technologies
(pp. 62-80).

[5] McKeeth, J. (2003). A Guide to Peer-2-Peer. Retrieved
November 14, 2008, from http://bdn1.borland.com/
article/borcon/files/3214/paper/3214.html

[6] Minar, N., & Hedlund, M. (2001). A Network of Peers:
Peer-to-Peer Models Through the History of the
Internet. In A. Oram (Ed.), Peer to Peer: Harnessing
the Power of Disruptive Technologies (pp. 8-19).

[7] National Information Standards Organization (NISO)
Press (2004). Understanding Metadata. Retrieved
November 14, 2008, from http://www.niso.org/
publications/press/UnderstandingMetadata.pdf

[8] Soldani, C. (2004). Peer-to-Peer Behaviour Detection
by TCP Flows Analysis. Retrieved November 14, 2008,
from http://www.run.montefiore.ulg.ac.be/~soldani/
P2P_Behaviour_Detection.pdf

[9] Zarco, G. (1998). Exchanging Data over the Network
using Delphi. Retrieved November 14,2008, http://
delphi.about.com/od/networking/l/aa112602a.htm

[10] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., &
Balakrishnan, H. (2001). Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications.
Retrieved November 14, 2008, from
http://www.sigcomm.org/sigcomm2001/p12-stoica.pdf

[11] Taylor, I. J. (2005). From P2P to Web Services and
Grids: Peers in a Client/Server World. London:
Springer-Verlag.

[12] Tóth, L.L., & Makkai, H. (2007). Development and
realization of new confidence and search methods of
the Delfin file sharing system. In Proceedings of the
Scientific Students Conference, Budapest University of
Technology and Informatics, Faculty of Electronics
and Informatics Engineering.

[13] Albert, R. & Barabási, A.L. (2002). Statistical
Mechanics of Complex Networks. Reviews of Modern
Physics, 74, pp. 47-97.

[14] D. Eastlake, P. Jones. US Secure Hash Algorithm 1
(SHA 1). The Internet Society, Request For Comments
3174, September 2001.

[15] P2PRG (2007). The Internet Research Task Force
Peer-to-Peer Research Group. Retrieved from
http://www.irtf.org, June 2007.

[16] P. Maymounkov and D. Mazieres (2002). Kademlia: A
peer-to-peer information system based on the xor
metric. In Proceedings of IPTPS02, Cambridge, USA,
March 2002.

[17] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker (2001). A scalable
conten t- addressable network. In Proc. ACM
SIGCOMM 2001, August 2001.

[18] Eng Keong, Jon Crowcroft, Marcelo Pias, Ravi Sharma
and Steven Lim. A Survey and Comparison of Peer-to-
Peer Overlay Network Schemes. IEEE
Communications, March 2004.

http://bdn1.borland.com/
http://www.niso.org/
http://www.run.montefiore.ulg.ac.be/~soldani/

 Volume E-1, No.1(5)

 - 70 -

AUTHOR BIOGRAPHIES

 Loránd Lehel Tóth received his
M. E. from the Budapest University
of Technology and Economics in
2009. His main fields of interest are
peer-to-peer overlay networks and
character encoding. He published
many conference and journal papers

as co-author in the field of the peer-to-peer based
communication. He participated in the Conference of
Scientific Circle of Students with the paper:
“Development and realization of the new confidence
and search methods of the Dolphin file sharing
system” in 2007. He obtained professional
experiences in the General Electric as a Purchased
Material Quality Engineer Assistant, in Power
Controls and Lighting division in 2008-2009.

 Dr. Gábor Hosszú received the
M.Sc. degree from Technical
University of Budapest in electrical
engineering and the Academic
degree of Technical Sciences
(Ph.D.) in 1992. After graduation he
received a three-year grant of the

Hungarian Academy of Sciences. Currently he is a
full-time associate professor at the Budapest
University of Technology and Economics. His main
interests are the Internet-based media-communication
and the multicast technology. He published several
technical papers and wrote chapters and books in the
field of the media-communication. In 2001 he
received the three-year Bolyai János Research Grant
of the Hungarian Academy of Sciences. He leaded
several research projects. His current field of
interesting is the different technologies of the
multicasting, the peer-to-peer communication,
collaborative security, and the VHDL based digital
system design.

Dr. Ferenc Kovács received the
M .E. from the Technical University
of Budapest in 1959, the Academic
degree Technical Sciences (Ph.D.) in
1981 and the Doctor of Hungarian
Academy of Sciences degree in
2001.

He joined the Research Institute for Electronics in
1959 where he worked on the field of microelectronic
design and test. Since 1982 he has been Associate
Professor on the Department of Electronic Devices,
Technical University of Budapest, getting the
Professor title in 2001. Since 2001 he is also a
Professor on the Peter Pazmany Catholic University,
Faculty of Information Technology, Vice dean for the
research field and head of the Jedlik Research
Laboratory. He published more than 140 technical
papers and seven books. His area of research are the
development of integrated circuit test equipment, real-
time applications of VLSI circuits, low-power design
of CMOS circuits and the design of low-power
biomedical instruments.

Zoltán Czirkos is a PhD student
at the Technical University of
Budapest. His main fields of
interest are operating system
security and peer to peer
communication. In 2005, he
participated in the Conference of

Scientific Circle of Students, with the paper
“Development of P2P Based Security Software”, and
received the second award. He published several
technical papers and wrote chapters as co-author in
the field of the collaborative security.

