
Research and Development on Information and Communications Technology

40

Toward a Comprehensive Platform for IoT

Applications in Vietnam Using Machine to

Machine Communication

Nguyen Tai Hung

Hanoi University of Science and Technology, Hanoi, Vietnam

hung.nguyentai@hust.edu.vn

Abstract - The Internet of Things (IoT)
applications like Home Automation (HA) or Smart
Grid presents one of the biggest growth potential in

the Machine-to-Machine (M2M) communication
today. Thanks to M2M technologies’ advances

recently, the sensors/actuators and smart meters are

expected not only require human intervention in
sensing environmental parameters, meter the

energy/water consumption level and send them back
to central platform for processing but also give out

proper & automatic responses to the situation.
However, there are still many challenges in

designing communication protocols and platform to
exchange and share of collected information and

other various constrains such as the variety of end
devices, real-time nature and extra-low power

consumption. This article investigates on a number
of existing communication protocols and platforms

that can be adopted for M2M application
development and deployment in Vietnam conditions.

Keywords: M2M; IoT; M2M platform; M2M

Protocols; API; Home Automation.

I. INTRODUCTION

In the most basic sense, M2M is a technology of
the future, where a smart device will interact and

communicate via a communications network. In
order to function, each device must be outfitted with

a communication module, and in many cases a
sensor, for data collection. With numerous advances

in wireless communication and in the base-band

processing technologies, these devices can be easily
placed in diverse locations, far away from one

another, or form a central system through various
access network technologies, like xDSL, Satellite,

GPRS, EDGE, UMTS or Wi-Fi. In general M2M

communication often refers to a system of remote
sensors, middleware, software and applications that

are continuously transmitting data to a central
system. The main goal of M2M communications is

to enable sharing of information between electronic

systems autonomously. However, despite its real-
time application and lots of benefits, research in

M2M communication is still in its infancy, and
faces many technical challenges, including system

architecture, specifications of the platform, energy
efficiency, cost effectiveness, reliability, privacy,

and security [17]. This paper is about to address
some of those issues, focusing on the

communication protocols and unified platform and
service exposure capability of M2M

communication. The paper contributions are the
evaluation of some of the potential candidates for

communication protocols on a test-bed that built
around the in-house and open source-based M2M

platform. The paper also shows the usefulness of the
platform API (Application Programing Interface)

with two demonstrated applications, named Home
Automation and Smart Meter.

II. PREVIOUS WORK

To our best of knowledge, in the field of M2M

communication and IoT most of the researches until
recently are focusing on the sensing technologies

and coupled wireless and wired local networking
technologies like RFID or IEEE 802.15.4 and there

are a few of researching works on the M2M

platform, though, worthy to analyze here.
Regarding to the M2M platform architecture,

amongst others, the most significant works are
inside working groups of the standardization body

ETSI and industrial forum OneM2M.

Volume E-3, No. 9 (13)

41

An ETSI Technical Committee [21,1] is
developing standards for M2M Communication.

The aim of this group is to provide an end-to-end
view of M2M standardization cooperating with

ETSI’s activities on Next Generation Networks and

3GPP standards initiative for mobile
communication technologies and Section III.A

below will describe the details of M2M
communication architecture defined by ETSI. There

is another important standardization effort,
oneM2M [5], has been setting up by the

collaboration of international standard bodies such
as ETSI, ATIS, TIA, etc. as well as equipment

manufacturers all over the world. The purpose of
this oneM2M forum is to develop technical

specifications for addressing the need of a common
M2M Service Layer that can be readily embedded

within various hardware and software, and relied
upon to connect the huge amount of devices in the

field with M2M application servers worldwide. A
critical objective of oneM2M is to attract and

actively involve organizations from M2M-related
business domains such as: telematics and intelligent

transportation, healthcare, utilities, industrial
automation, smart homes, etc.

The work in [3] explored M2M communication

applications and scenarios, which are growing and

leading the way to new business cases. The work
revealed the practical requirements and threats of

M2M application scenarios and point out two main
aspects, namely the unpredictable connectivity to

the core network and the demand for high
configurability and flexibility of M2M devices.

While this work attempted to identify security
threats against M2M communications, the exact

technologies upon which M2M communications are
based were not taken into account. On the other

hand, various challenges in designing home M2M
network are presented in [4]. This work shows that

the home networks are expected to require effective
M2M gateways to facilitate communication among

the various M2M devices and to provide a
connection to a backhaul (e.g., with the core

communication network of SG). While the backhaul
connection may be fiber, cable, DSL, Ethernet, or

even cellular, the authors suggest that it is also
important to choose appropriate network protocols

to enable M2M devices to communicate inside a
home environment.

And the conclusion here is that there are very few
researches, in the past, who have tried to investigate

the details of a comprehensive platform in M2M
communication which hosts various mechanisms

from perspective of the service abstraction, service

composition, service management and device/sensor
management. This is the reason why we wrote this

paper to provide the readers with an overview
concept of what M2M communication platform is.

The paper also provides the inside look in to the
components of the M2M platform, like the

middleware, the protocols and the service
abstraction (API) layer. Finally a prototype

implementation of the said platform and its
application using open-sources are also presented on

the paper.

Thus, the remainder of this paper reviews, in
section III, the important concepts of M2M
communication and more importantly investigating
the various options for protocols to be used in M2M

communication while section IV provides the
details of our implementation of so-called HUST

M2M platform with a sample application called
home automation. We conclude with lessons

learned and future works.

III. DETAILS ABOUT M2M
COMMUNICATIONS

This section summarizes the basic concepts and
mechanisms using in M2M communication. Sub-

section A shows the reference architecture with all
of functional blocks and components comprising of

the complete end to end M2M system, sub-section
B presents the potential protocols could be used in

M2M for components to communicate and share
information with each other and with central

system, while sub-section C describes the most
important element: the central platform as well as its

API helping to develop a wide range of real-life
applications.

III. 1. M2M Communication Architecture

Nodes

NodesNodes

Nodes

Sink

G
ate

w
ay

Wireless Networks

M2M Platf orm

Smart Home

Smart City

M2M Applications

M2M Nodes/Sensors

Figure 1: ETSI M2M Architecture

Research and Development on Information and Communications Technology

42

High–level M2M architecture provides an
overview of the components of a system and the

relationship between the individual components. It
provides the starting point for a stepwise approach

to the description of the functional architecture.
Although every particular deployment of M2M is

unique, there are four basic stages that are common
to most M2M based applications [2]: Collection of

data, Transmission of data through a
communication network, Assessment of data, and

Response to the available information. ETSI TC
M2M has adopted the standard architecture (Figure

1) which allows for a common understanding of
such high-level system that is under standardization.

This high level architecture fully endorses the need
for M2M service capabilities that are exposed

towards applications, whether it is in the network, in
the device or in the gateway. According to
definition, the architecture of M2M Communication

System is composed of three domains: Node
domain, Network domain and Application domain.

M2M Node domain is used to sense the activity
under area of interest and collect the data for further

processing [2].

III. 2 M2M Communication Protocols

As mentioned above, there are a lot of types of
the devices (from tiny sensors, actuators to the

gateway and meters) using in various applications
of the M2M systems, some of them connect with the

integrated communication stack while others not.
That reality makes the choice of communication

protocols for an M2M network/application harder to
be standardized and optimized. Furthermore, the

nature of ultra-low power consumption of those
devices make the task even harder that chosen

protocol need to be powerful enough to accomplish
the application requirements while have to be light

for saving power (at the device). Thus, our main
motivation here was to create an M2M test-bed in

our university facility from where to test different
candidates for using as communications protocols

and for innovative applications that could be applied

to a wide range of real-life scenarios. It is expected
to provide a brief yet accurate description of the key

protocols that can be used for implementing the
M2M Communication. Our own study, which are

on-going work in our test-bed, lead to following list
of potential protocols could be used alternatively or

jointly to solve different needs of the

communication between machines: CoAP
(Constrained Application Protocol); MQTT

(Message Queue Telemetry Transport); XMPP
(Extensible Messaging and Presence Protocol);

RESTFUL Services (Representational State
Transfer); AMQP (Advanced Message Queuing

Protocol); and Web-sockets.

CoAP is a synchronous request/response
application layer protocol that was designed by the

Internet Engineering Task Force (IETF) to target
constrained-recourse devices. It was designed by

using a subset of the HTTP methods making it
interoperable with HTTP [10]. CoAP runs over

UDP to keep the overall implementation
lightweight. It uses the HTTP commands GET,

POST, PUT, and DELETE to provide resource-
oriented interactions in a client-server architecture.

CoAP is a request/response protocol that utilizes
both synchronous and asynchronous responses. The
reason for designing a UDP-based application layer

protocol to manage the resources is to remove the
TCP overhead and reduce bandwidth requirements.

Additionally, CoAP supports unicast as well as
multicast, as opposed to TCP, which is by its nature

not multicast-oriented. Running on the unreliable
UDP, CoAP integrated its own mechanisms for

achieving reliability. Two bits in the header of each
packet state the type of message and the required

Quality of Service (QoS) level. There are 4 message
types:

1. Confirmable: A request message that

requires an acknowledgement (ACK). The
response can be sent either synchronously

(within the ACK) or if it needs more
computational time, it can be sent

asynchronously with a separate message.

2. Non-Confirmable: A message that does not
need to be acknowledged.

3. Acknowledgment: It confirms the reception

of a confirmable message.

4. Reset: It confirms the reception of a
message that could not be processed.

MQTT was released by IBM and targets
lightweight M2M communications. It is an

asynchronous publish/subscribe protocol that runs
on top of the TCP stack. Publish/subscribe protocols

meet better the M2M communication requirements

Volume E-3, No. 9 (13)

43

than request/response since clients do not have to
request updates thus, the network bandwidth is

decreasing and the need for using computational
resources is dropping. In MQTT there is a broker

(server) [12] that contains topics. Each client can be

a publisher that sends information to the broker at a
specific topic or/and a subscriber that receives

automatic messages every time there is a new
update in a topic he is subscribed.

The MQTT protocol is designed to use bandwidth

and battery usage sparingly, which is why, for
example, it is currently used by Facebook

Messenger. MQTT ensures reliability by providing
the option of three QoS levels:

1. Fire and forget: A message is sent once and

no acknowledgement is required.

2. Delivered at least once: A message is sent
at least once and an acknowledgement is
required.

3. Delivered exactly once: A four-way
handshake mechanism is used to ensure the

message is delivered exactly one time.

XMPP was designed for chatting and message
exchanging. It was standardized by the IETF over a

decade ago, thus being a well-proven protocol that
has been used widely all over the Internet. However,

being an old protocol, it falls short to provide the

required services for some of the new arising data
applications. For this reason, last year, Google

stopped supporting the XMPP standard due to the
lack of worldwide support. However, lately XMPP

has re-gained a lot of attention as a communication
protocol suitable for the M2M Communication.

XMPP also runs over TCP and provides
publish/subscribe (asynchronous) and also

request/response (synchronous) messaging systems.
It is designed for near real-time communications

and thus, it supports small message footprint and
low latency message exchange [14]. As the name

explicitly states, XMPP is extensible and allows the
specification of XMPP Extension Protocols (XEP)

that increase its functionality. XMPP has TLS/SSL
security built in the core of the specification.

However, it does not provide QoS options that make
it impractical for M2M communications. Only the

inherited mechanisms of TCP ensure reliability.
XMPP supports the publish/subscribe architecture

that is more suitable for the M2M Communication

in contrast to CoAPs request/response approach.
However, XMPP uses XML messages (eXtensible

Markup Language) that create additional overhead
due to unnecessary tags and require XML parsing

that needs additional computational ability which

increases power consumption.

RESTFUL SERVICES is not really a protocol
but an architectural style. It was first introduced by

Roy Fielding in 2000 [15], and it is being widely
used ever since. REST uses the HTTP methods

GET, POST, PUT, and DELETE to provide a
resource-oriented messaging system where all

actions can be performed simply by using the
synchronous request/response HTTP commands. It

uses the built-in accept header of HTTP to indicate
the format of the data that it contains. The content

type can be XML or JSON (JavaScript Object
Notation) and depends on the HTTP server and its
configuration. REST is already an important part of
the M2M Communication because it is supported by

all the commercial M2M cloud platforms. Moreover
it can be implemented in smartphone and tablet

applications easily because it only requires an
HTTP library which is available for all the

Operative Systems (OS) distributions.

AMQP is a protocol that arose from the financial

industry. It can utilize different transport protocols
but it assumes an underlying reliable transport

protocol such as TCP [16]. AMQP provides
asynchronous publish/subscribe communication

with messaging. Its main advantage is its store-and-
forward feature that ensures reliability even after

network disruptions. It ensures reliability with the
following message-delivery guarantees [16]:

1. At most once: means that a message is sent

once either if it is delivered or not.

2. At least once: means that a message will be
definitely delivered one time, possibly more.

3. Exactly once: means that a message will be

delivered only one time.

Security is handled with the use of the TLS/SSL
protocols over TCP. Recent research has shown that

AMQP has low success rate at low bandwidths, but
it increases as bandwidth increases. Another study

shows that comparing AMQP with the previously
mentioned REST, AMQP can send a larger amount

of messages per second [17]. Additionally, it has

Research and Development on Information and Communications Technology

44

been reported that an AMQP environment with
2,000 users spread across five continents can

process 300 million messages per day [17].

WEB-SOCKET protocol was developed as part
of the HTML 5 initiative to facilitate

communications channels over TCP. Web-socket is
neither a request/response nor a publish/subscribe

protocol. In Web-socket a client initializes a
handshake with a server to establish a Web-socket

session. The handshake itself is similar to HTTP so
that web servers can handle Web-socket sessions as

well as HTTP connections through the same port
[18]. However, what comes after the handshake

does not conform to the HTTP rules. In fact, during
a session, the HTTP headers are removed and

clients and servers can exchange messages in an
asynchronous full-duplex connection. The session

can be terminated when it is no longer needed from
either the server or the client side. Web-socket was
created to reduce the Internet communication

overhead while providing real-time full-duplex
communications.

III. 3. M2M Platform and API

Though, there has been a significant activity in

the open source community relating to the design
and development of platforms and operating

environments upon which M2M applications can be
built, this section tries to figure out the most

important aspects on the design of the platforms
used to realize M2M communication. In our

opinion, a platform designed for M2M applications
must cover to the needs of four different types of

users namely a) End Users of M2M applications, b)
Application Developers, c) Sensor Providers and d)

Administrators who operate and maintain the
platform. Thus, the most important thing, a platform

considered to be complete if it consists of a set of
services, typically delivered over a Wide Area

Network or the Internet using IP based transports
such a HTTP, TCP or UDP and fully integrated with

application-level protocols as investigated on sub-
section B above. Below are some discussions about

different aspects of a so-called complete platform

for M2M network that we think need to be
thoroughly investigated while trying to building

such system.

Platform Users

There are various types of users of an M2M
platform which are described subsequently. First

category of those users are application developers
who register themselves to the M2M platform and

use the platform services to develop and deploy
applications. The applications themselves may be

distributed onto both “edge” devices such as sensor
nodes or gateway devices and back-end cloud

hosted servers. Application developers are provided
necessary computing resources and Application

Programming Interfaces (APIs) in order to develop
applications and then deploy them on the platform.

Application developers use API keys to identify and
authenticate themselves to the platform and get

access to services and resources as per their
entitlement. Sensor providers are those who own

and/or operate sensors and contribute sensor
observations to the platform, either for their own
private use or for use by others based on access

control and privacy policies. Sensor providers use
APIs provided by platform to push data to the

platform. Platform Administrators use the services,
APIs and tools provided by the platform to manage

and monitor users, services & devices.
Administrators provide compute, storage and

network resources to application developers and
keep track of resource usage. Finally we have end

users of M2M applications who has huge number
and consumes the applications developed by

application developers.

Platform Services

There are different types of services need to be
provisioned on the platform. They include services

data management, sensor/device management, data
storage, analytics & visualization and application &

user management.

 Device Management Services are used by
both application developers and administrators

to register sensors and gateway devices, give
them a unique identity, address the devices,

check their health and connectivity status,
install and update software on the devices and

access resources and consume services from the
devices.

 Sensor Services are used by M2M
applications to register sensors/observers in the
platform, create meta-data about the sensors.

The metadata includes the features of the

Volume E-3, No. 9 (13)

45

sensors and the real-world phenomena that they
measure or observe, the geographical location

of the sensors and the real-world entity
observed. Sensor Services are also used to

capture, store and query sensor observations.

Sensor Services are therefore at the core of any
M2M platform..

 Storage Services are used by application
developers to store application specific data

persistently. This data is typically not the sensor
observation data, since that is taken care by the

Sensor Services. Typically Storage Services
include feature of Analytics Services that need

to be highly scalable. Complexities of the

underlying infrastructure need to be hidden
from the application developers and convenient

APIs must be designed to enable applications to
easily access the analytics platform. Moreover,

it must be realized that, analytics is very
problematic and only valid within domain.

Hence the actual analytics algorithms are
developed as part of the applications

themselves. These algorithms may be written in
a variety of languages. Often scripting

languages such as Python are used for the actual
algorithms. The platform must therefore be

multiple-languages support.

 Visualization of sensor data is another
important requirement and goes hand in hand

with analytics. The M2M platform must provide
necessary tools and APIs for creating rich

visualization of captured sensor data as well as
processed data resulting from analytics.

 Application and User Management
services are used by platform administrators to
create tenants on the M2M platform, provide

resources and provision platform services to
tenants. Application developers themselves use

these services to request for resources and
services and manage the life cycle of the

applications.

Platform Architecture

Normally the software platform architectures for
M2M Communication in the literature incorporates

a middleware as an abstraction layer and follows a
Service Oriented Architecture (SOA) approach in

the next generation Internet. The adoption of the
SOA principles allows decomposition of singular

systems into applications consisting of a set of
simpler and well-defined components. The use of

common interfaces and standard protocols allows
for flexibility in service composition and reduction

of the time necessary to adapt to the changes

imposed by the application evolution. Since there
are no commonly accepted layer architectures for

M2M, there is a difficulty in specifying a common
set of services and an environment for service

design and composition. A typical integrated
architectural approach often proposes following

M2M specific layers over the SOA namely: a)
Service Composition, b) Service Management and

c) Object Abstraction.

Service Composition provides for building
specific applications through the composition of

atomic services derived from various connected
objects. Service management includes: object
dynamic discovery, status monitoring, and service
configuration. This basic set could be extended with

additional functionalities involving QoS
management, semantic interoperability functions

etc. Object Abstraction is needed for heterogeneous
connected objects for harmonizing the access to the

different objects/devices. Two types of service-
oriented architectures stand out as potential

candidates to enable uniform interfaces to smart

objects: the Representational State Transfer (REST)
[19] and WS-* [20] Web services.

Platform API

This sub-section describes an Open API

specifications [21], for an M2M platform, from
ETSI. By our opinion it is probably the most

valuable achievement at this moment (in the
standardization process of M2M Communication

technologies). Actually, in this Open API we can
see the big influence of Parlay specification. Parlay

Group leads the standard, so called Parlay/OSA
API, to open up the networks by defining,

establishing, and supporting a common industry-
standard APIs. Parlay Group also specifies the

Parlay Web services API, also known as Parlay X
API, which is much simpler than Parlay/OSA API

to enable IT developers to use it without network
expertise [22]. The goals are obvious, and they are

probably the same as for any unified API. One of
the main challenges in order to support easy

development of M2M services and applications will

Research and Development on Information and Communications Technology

46

be to make M2M network protocols “transparent” to
applications.

Providing standard interfaces to service and

application providers in a network independent way
will allow service portability. At the same time an

application could provide services via different
M2M networks using different technologies as long

as the same API is supported and used. This way an
API shields applications from the underlying

technologies, and reduces efforts involved in service
development. Services may be replicated and ported

between different execution environments and
hardware platforms. A standard open M2M API

with network support will ensure service
interoperability and allow ubiquitous end-to end

service provisioning.

The Open API relates to several interfaces of
M2M architecture (Figure 2). For example:

 The interface between the platform and

external service providers running their services
remotely,

 The interface between the platform and the
customer applying the features offered by the
platform,

 A set of interfaces supporting additional
functionality (installation support, access to
remote databases, remote operation and

management of platform), etc.

Figure 2. M2M Interfaces from ETSI [1]

Main API sections for Services Capabilities Level
are:

 Subscription and Notification (e.g.
Publish/Subscribe).

 Grouping and Transactions.

 Application Interaction: Read, Do, Observe.

 Compensation (micro-payment).

 Sessions.

Let us provide more details for Open API
categories and make some comments:

Grouping. A group here is defined as a common

set of attributes (data elements) shared between
member elements. On practice it is about the

definition of addressable and exchangeable data

sets. Just note, as it is important for our future
suggestions, there are no persistence mechanisms

for groups Transactions. Service capability features
and their service primitives optionally include a

transaction ID in order to allow relevant service
capabilities to be part of a transaction. Just for the

deploying transactions and presenting some
sequences of operations as atomic. In the terms of

transactions management Open API presents the
classical 2-phase commit model. By the way, we

should note here that this model practically does not
work in the large-scale web applications. We think

scalability is very important because without it we
cannot have “billions of connected devices”.

Application Interaction part is added in order to

support development of simple M2M applications
with only minor application specific data

definitions: readings, observations and commands.
Application interactions build on the generic

messaging and transaction functionality offer
capabilities considered sufficient for most simple

application domains.

Messaging. The Message service capability

feature offers message delivery with no message
duplication. Messages may be unconfirmed,

confirmed or transaction controlled. The message
modes supported are single Object messaging,

Object group messaging, and any object messaging;
(it can also be Selective object messaging). Think

about this as Message Broker.

Event notification and presence. The notification
service capability feature is more generic than

handling only presence. It could give notifications
on an object entering or leaving a specific group,

reaching a certain location area, sensor readings
outside a predefined band, an alarm, etc. It is a

Volume E-3, No. 9 (13)

47

generic form. So, for example, geo fencing should
fall into this category too. The subscriber subscribes

for events happening at the Target at a Registrar.
The Registrar and the Target might be the same

object. This configuration offers a publish/subscribe

mechanism with no central point of failure.

Compensation. Fair and flexible compensation
schemes between cooperating and competing parties

are required to correlate resource consumption and
cost, e.g. in order to avoid anomalous resource

consumption and blocking of incentives for
investments. The defined capability feature for

micro-payment additionally allows charging for
consumed network resources. It is very similar, by

the way, to Parlay’s offering for Charging API.
Again it is a big question from the modern large-

scale applications point of view: shall we develop a
special API for the compensations or create a rich
logging functionality where the external log
processing should be responsible for the things as

charging.

Sessions. In the context of Open API a session
shall be understood to represent the state of active

communication between Connected Objects. Open
API is REST based, so, the endpoints should be

presented as some URI’s capable to accept (in this

implementation) the basic commands GET, POST,
PUT, DELETE. Actually, ETSI uses the Smart

Meter profile as ‘proof of concept’ for the M2M
service platform in Release 1 […].

IV. HOME AUTOMATION APPLICATION

At HUST, we started a research program in early

2015 to build a unified test-bed (Figure 3) for M2M
Communication. And in that project, our team has

been able to develop, amongst other things, a light-
weight M2M platform utilizing open source and

with an RESTful-based API. With that API, various
applications of real life could be developed, tested

and benchmarked before going in to the real
deployment. But for this testbed we specifically try

to prototype three kinds of application that are
useful and feasible for commercial deployment in

Vietnam which we called Smart Meter, Home
Automation (HA) and Location Based Services

(LBS). The Smart Meter application provides
functions for automatically collecting and metering

the usage level of electrical users and send back to
back-end server for storage, analyzing and billing

while the HA application provides functions for
smart home like sensing the temperature, light,

humidity, smoke, etc., send back to back end server
and may conduct the suitable control tasks sending

from central server. Finally the LBS application

providing functions of automatically determine the
geographically location of end users (mobile phone,

car, truck, etc.) and send back to back-end server
which will triggered specific service logics to be

implemented depend on the location of end users.
Subsequent sections present the design of the HUST

M2M platform as well as detailed description of the
HA application.

HUST-M2M Server

Electrical AS

Home Automation (HA) AS

Location AS

TCP/IP (LAN) Network

Electrical
Smart Meter

HA Sensor/
Actuator

LBS Devices

Back-end Servers M2M Platform Communication
Environment

IoT Devices

Figure 3. HUST M2M Test-bed

IV. 1. HUST M2M Platform

There are different technical architectural

approaches for M2M systems such as e.g., end-to-

end Internet approach [3,4], and M2M gateway
based approach [5,6]. It is possible to establish an

Internet connection from an Internet node to the
M2M asset device without any additional

intermediate node making transformation into the
messages in the end-to-end Internet based approach,

if there is at least tiny IP stack also in small
embedded devices. This is possible to be done even

for such small devices by relying power efficient
physical layer and IETF IPv6 Low Power wireless

Area Networks (6LowPAN) adaptation layer
enabling universal Internet connectivity, the IETF

Routing Over Low power and Lossy networks
(ROLL) routing protocol enabling availability, and

IETF Constrained Application Protocol (CoAP)
enabling seamless transport and support of Internet
applications [7–15]. However, the challenge is that
also the embedded devices which are not IP capable

would be required to connect into the Internet.
M2M gateway based approach may enable also

their connectivity, however, the challenge may be

dynamic behavior of wireless systems and need to

Research and Development on Information and Communications Technology

48

adapt with different kinds of service back-end
systems. Our investigation found out two aspects

that most existing M2M platforms are either do not
support or support incompletely. The first aspect is

the issue of supporting of application-level
communication protocols and the second aspect is

the way new type of devices (sensors/actuators,
meters, gateway, etc.) to be integrated and

communicated. On the first aspect, most of
platforms just support one or few protocol listed on

section III-B while on the device management
aspect, most of the platform get difficulty when

adding new type of sensors/actuators or meters that
doesn’t complied with current protocol and/or

communication environment. That’s why in our
research project, we have tried to develop a modular

software architecture of the M2M platform that
allows easily adding more protocols and device
management modules in form of the plug-in. The

proposed platform also follows the ETSI standards
in which there’s a RESTful-based API allowing to

develop more application/services without changing
or modification of the core parts. Figure 4 illustrates

this idea of the designing of platform, and besides
the above mentioned features/modules, the platform

also provides a flexible SCL [25] that can be
deployed in an M2M network, a gateway, or a

device. An SCL is composed of small tightly
coupled plugins, each one, offering specific

functionalities. A plugin can be remotely installed,
started, stopped, updated, and uninstalled without

requiring a reboot. It can also detect the addition or
the removal of services via the service registry and

adapt accordingly facilitating the SCL extension.

Java Runtime Environment
on

Operating System and Hardware

EQUINOX Framework

MAIN
Modul

e
HTTP COAP ZIGBEE

OMA-
DM

Additional
Services

Generic
Processing Protocols Gateway

Device
Management

RESTful-based API

Fleet
Management

App.

Home
Automation

App.

Health
Management

App.

Smart Grid
App.

Figure 4. HUST M2M platform functional

architecture

The MAIN module provides a protocol-
independent service for handling REST request.

Specific communication mapping plugins can be
added to support multiple protocol bindings such as

HTTP and CoAP. The platform can be extended
with specific device management mapping plugins

to perform device firmware updates by reusing
existing protocols such as OMA-DM [24]. It can be

also extended by various interworking proxy
plugins to enable seamless communication with

legacy devices such as ZigBee and Wi-Fi
technologies. A new plugin based on the autonomic

computing paradigm is designed to enhance HUST
M2M resource discovery and self-configuration.

Figure 5 shows the CORE plugin implements the

SCL_Service interface to handle generic RESTful
request. It receives a protocol-independent request

indication and answers with a protocol-independent
response confirm. The Router defines a single route
to handle every request in a resource controller

simply using request URI and method. The
Resource_Controller implements CRUD methods

(Create, Retrieve, Update, and Delete) for each
resource. It performs required checking operations

such as access right authorization, and resource
syntax verification. The Resource_DAO provides an

abstract interface to encapsulate all access to
resource persistent storage without exposing details

of the database.

The Event_Notifier sends notifications to all
interested subscribers when a resource is created,

updated or deleted. It performs filtering operations
to discard events not of interest to a subscriber. The

Resource_Announcer announces a resource to a
remote SCL to make it more visible and accessible

to other machines. It also handles resource de-
announcement. The Request_Sender holds

discovered protocol-specific clients implementing
the Client_Service interface. It acts as a proxy to

send a generic request via the correct
communication protocol. The Interworking_Proxy

holds discovered interworking proxy units (IPUs)

implementing the IPU_Service interface, and acts as
a proxy to call the correct IPU controller.

Device_Manager holds discovered Remote Entity
Managers (REMs) implementing the REM_Service

interface, and acts as a proxy to call the correct
device manager controller.

Volume E-3, No. 9 (13)

49

HTTP_Client

HTTP_Serviet

CoAP_client

CoAP_Serviet

OMADM_
Monnitor

Device_
Manager

Request_
Rediretion

OMADM_
Controller

Request
Sender

Router

Resource
Controller

Resource
Annoucer

Resource
_DAO

Interworking
_proxy

Event_
notifier

Zigbee
Monitor

Zigbee
Controller

Phidgets
Monitor

Phidgets
Controller

OODB
Driver

HTTP_Mapping
plugin

Client Service

Client Service

SCL Service

IPU Service

IPU Service DB Service

REM Service

CORE plugin

DB_Driver
plugin

Zigbee_Mapping
plugin Phidgets_Mapping

plugin

CoAP_Mapping
plugin

OMADM_Mappin
g

plugin

Figure 5. The software modules of HUST M2M
platform

The HTTP_Mapping plugin provides a

bidirectional binding to the HTTP protocol. The
HTTP_Servlet receives and converts an HTTP

request into a generic one, and call the CORE plugin
via the SCL_Service interface. The HTTP_Client

implements the Client_Service interface to send a
generic request via HTTP. The Phidgets_Mapping

plugin provides a bidirectional mapping to
interwork with legacy Phidgets devices. The

Phidgets_Monitor discovers Phidgets devices, and
calls the CORE plugin to create required resources

on the SCL. The Phidgets_Controller implements
the IPU_Service interface to seamlessly perform a

generic request via the Phidgets API. The
OMADM_Mapping plugin provides a bidirectional

mapping to manage OMA-DM enabled devices.
The OMADM_Monitor listens to OMA-DM enabled

devices, and calls the CORE plugin to create
required resources on the SCL. The

OMADM_Controller implements the REM_Service
interface to converts generic request into OMA-DM

management session. The DB_Driver plugin
provides an Object Oriented Data Base (OODB)

accessible via the DB_Service interface. Other

plugins can be deployed using the same approach to
interwork with additional protocols or to integrate

new capabilities.

IV. 2. Home Automation Application

To illustrate the effectiveness of using the
platform API in specific application development,

this section presents the process of developing the

home automation application with the typical
temperature auto-sensing function.

Figure 6 depicts the whole application scenario

with different components such as sensors and
smart meters for acquiring the room condition

(temperatures, humidity level, smokes, and so on) or
health parameters or the usage of electricity/water.

The heart of the whole system is the HUST M2M
platform which store and analyze the data collected

from those sensors/meters and subsequently give
out proper responses/alerts. Besides, the system

include the features to allow administrator or user to
configure and change the various application

parameters and/or purposes.

Sensors
(Temp., Humidity, etc.)

Smart meter
(Elec & water)

Sensors
(Health parameters)

DCU

HUST M2M
platform

Data server
(water)

Data server
(Electricity)

Data server
(Temp.; Humidity)

Administrators/
Users

data
data data

Colected data

data

Information/alert

Figure 6: Home Automation Application
architecture

However, on this paper we only focus on a

feature that allows the system to sense the
temperature level and give out the proper

responses/alerts as an example of the great potential

of using M2M platform to meet various demands of
daily people and society life. Thus sensors which
are installed in all the home and rooms will send the
measured temperature parameters back to

application hosted on HUST M2M platform, the
application then compare the collected parameters

with pre-set threshold levels and subsequently send
out the alert or normal condition indicator depend

on the comparison results. The app also allow to

Research and Development on Information and Communications Technology

50

automatically start the fire-fighter systems in case of
the serious alert. Similar features can be applied to

other fields like monitoring health condition for old
people or monitoring other environment condition.

Figure 7 illustrates the work flow of the application
while figure 8 describes the details of algorithm for

processing the collected data in which the measured
data from sensors will be compared with the

configurable thresholds, if it is under the thresh old
then the LED will be on green to indicate the

normal condition, otherwise the LED will turn RED
meaning the alarm condition which will lead to the

initiation of alarm system as well as the security
system to take action (i.e. shutdown) against all the

electrical equipment’s in the room after a short
interval of time (for saving the on-going works).

The management procedure of the devices in a
house is also provided and presented on figure 9
with combination of several steps inclusion of

registration of devices into the application database.
For the registered devices (Figure 10), the

administrator/user can perform activities like
initiation, changing the power level, disable or even

shut it down.

Start

Sensor
board

HUST M2M platform

Thresh Safe
Dangerous

Temparature

So sánh

Lesser or equalGreater

check check

Protection
schemes

Equip. (fan,
aircon)

User User

Not if icationControl Signal

Control signalNotificat ion

Equip. (Fan,
air-con)

Control signal

Figure 7: The app working procedure

Measuring the temparature

<=thresh.
LED in green colour
indicating the normal

condition

The LED turns RED and
start the interval of 10s

to shut off all the
electrical devices (light,

fan, TV, etc) and
initiating the fire fighter
systems and other alarm

systems.

YesNo

Start

Figure 8. Processing algorithm for collected data

(temp.)

Start

Registration of devices

Initiation of devices

Control of devices

Stop

Figure 9. Procedure for controlling the electrical

devices

Figure 10. Registered devices on app database at

M2M platform

The figures 11 - 15 are some screen-shorts and
pictures taken from the implemented system and

application. Figure 11 is the sensor board designed

Volume E-3, No. 9 (13)

51

and assembled by our team for temperature
measurement while figure 12 illustrates measured

temperature displayed on the GUI of the application.
And finally the figure 13 shows the control board of

the application that allows users to do the controlling

activities like switch on or switch off the registered
devices.

Figure 11: The sensors board

Figure 12: The information of measured temp.

Figure 13: The control board for administrator/user

IV. 3. Performance Evaluation

With the test-bed depicted in Figure 3 we have
tested two applications: the Home Automation (HA)

and the Smart Meter. The HA application is

described on section IV-B above while the Smart
Meter is application that make use of the Arduino-

board based data transceiver to collect electrical
usage data (Figure 14) to send back to the platform

and ultimately to back-end server.

Figure 14: The Smart Meter Model for electrical

usage data collection

The data collected here includes electrical usage
level, identifier and full name of the user, identifier

of the meter, location information, and date and
time interval of the data collection. The test shows

that the platform can communicate smoothly to
semi-auto meter and with high reliability and low

latency as depicted on Table 1.

Table 1. Performance evaluation of the platform
for Smart Meter application

Item
Time

interval
Latency

Transmi-

ssion

cycle

No. Of

transmis-

sion

Loss

Times

Loss

Ratio

 1 10 days 1s 60’ 240 5 2,08%

 2 10 days 1,5s 60’ 240 2 0,8%

 3 10 days 2s 60’ 240 1 0,4%

The test is conducted over 30 days divided into 3

intervals of 10 days each. The data is sent back

every 60 minutes. The results show that the
transmission latency and loss ratio are quite

reasonable and if we want the small latency then the
loss ratio may increase and vice versa.

Research and Development on Information and Communications Technology

52

We have also developed and tested few
application communication protocols (those are

analyzed on section III-B) on our platform and test-
bed. The results show that CoAP is the most

lightweight protocol (least number of messages
exchanged per session and also smallest message

size) so it is suitable for the sensors/actuators that
need to save energy. But if the battery is not an

issue then HTTP is better fit with RESTful
applications due to its capability to carry rich

information. The table 2 below summarizes the
details of protocols implementation.

Table 2. Details of protocol implementation

Protocol Transport QoS Procedure No. of
messages

CoAP UDP YES Request/Response 03

RESTful HTTP NO Request/Response 06

XMPP TCP NO Publish/Subscribe 05

MQTT TCP YES Publish/Response 05

V. CONCLUSION AND FUTURE WORK

This paper presents our comprehensive analysis of

the M2M architecture as well as its wide range of
applications in the real life. Our research has pointed

out the necessity of completing the architecture and
implementation of the various processes (core

processing module, protocols, service exposing
layer, device management and more importantly the
API for application development) in order to allow
the M2M technology to be deployed in real life

environment. The proposed implementation for the
M2M platform makes use of the advanced concept

of service combination with usage of the standard
architecture and protocols. These results pave firm

initial steps on the way toward completing the whole
IoT (Internet of Things) ecosystem that make M2M

communication come in to real life applications such
as smart home, smart city, fleet management, etc.

The research is in fact our on-going work; we

currently work on the more sophisticated
mechanisms for device management as well as

processing of the collected data from wide range of
sensors/actuator and enhancing the system control

mechanisms.

REFERENCES

[1] ETSI Machine-to-Machine Communications info
and draft http://docbox.etsi.org/M2M/Open/

Retrieved: Dec, 2012

[2] Emmerson, Bob. "M2M: the Internet of 50 billion
devices" WinWin Magazine (2010): 19-22.

[3] I. Cha, Y. Shah, and A. U. Schmidt, “Trust in M2M

Communication”, IEEE Vehicular Tech. Mag., vol.

4, no. 3, Sep. 2009, pp. 69-75.

[4] M. Starsinic, “System Architecture Challenges in the

Home M2M Network”, in Proc. Applications and

Tech. Conf., Long Island, USA, May 2010.

[5] http://www.onem2m.org/

[6] R. Lu, X. Li, X. Liang, X. Shen, and X. Lin “GRS:

The green, reliability, and security of emerging

machine to machine communications”,
Communications Magazine, IEEE, April 2011, Vol.
49 , No. 4, pp. 28-35

[7] D.Uckelmann, M.Harrison, and F. Michahelles “An

Architectural Approach Towards the Future Internet
of Things” ARCHITECTING THE INTERNET OF

THINGS, 2011, pp. 1-24, DOI: 10.1007/978-3-642-

19157-2_1

[8] A. de Saint-Exupery, “Internet of Things – Strategic

Research Roadmap”, Sep.15, 2009.

http://www.internet-of-things-research.eu

[9] J. C. Ferreira, R. Roque, C. Roadknight, J. Foley, P

Ytterstad, and B. Thorstensen. Sensor Telco “new

business opportunities; Deliverable 1 - Main

technology trends, capabilities of devices and service
examples” Technical report, Eurescom, 2006

[10] Angelo P. Castellani, Mattia Gheda, Nicola Bui,

Michele Rossi, Michele Zorzi, “Web Services for the
Internet of Things through CoAP and EXI”, IEEE

International Conference on Communications
Workshops (ICC), 5-9 June 2011, pp. 1-6.

[11] Maria Rita Palattella, Nicola Accettura, Xavier
Vilajosana, Thomas Watteyne, Luigi Alfredo Grieco,
Gennaro Boggia, Mischa Dohler, “Standardized

Protocol Stack for the Internet of (Important)
Things”, Communications Surveys & Tutorials IEEE

15(3), 2013, pp. 1389-1406.

[12] Shinho Lee, Hyeonwoo Kim, Dong-kweon Hong,
Hongtaek Ju, “Correlation Analysis of MQTT Loss

and Delay According to QoS Level”, International

Conference on Information Networking (ICOIN),

28-30 Jan. 2013, pp. 714-717.

Volume E-3, No. 9 (13)

53

[13] Dinesh Thangavel, Xiaoping Ma, Alvin Valera,

Hwee-Xian Tan, Colin Keng-Yan Tan,
“Performance Evaluation of MQTT and CoAP via a

Common Middleware”, IEEE Ninth International

Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), 21-24 April

2014, pp. 1-6.

[14] Sven Bendel, Thomas pringer, Daniel Schuster,
Alexander Schill, Ralf Ackermann, Michael
Ameling, “A Service Infrastructure for the Internet

of Things based on XMPP”, IEEE International

Conference on Pervasive Computing and
Communications Workshops (PERCOM

Workshops), 18-22 March 2013, pp. 385-388.

[15] Roy Thomas Fielding, “Architectural Styles and the

Design of Network-based Software Architectures”,
PhD thesis, University of California, Irvine, USA,
2000.

[16] http://en.wikipedia.org/wiki/Advanced_Message_Qu
euing_Protocol, cited 28 Jul 2014.

[17] Joel L. Fernandes, Ivo C. Lopes, Joel J. P.

C.Rodrigues, Sana Ullah, “Performance Evaluation
of RESTful Web Services and AMQP Protocol”,
Fifth International Conference on Ubiquitous and

Future Networks (ICUFN), 2-5 July 2013, pp. 810-

815.

[18] http://en.wikipedia.org/wiki/WebSocket, cited 28 Jul

2014.

[19] R. Fielding, “Architectural styles and the design of
network- based software architectures”, Phd thesis,

2000.

[20] Cesare Pautasso, Olaf Zimmermann, and Frank
Leymann, “Restful web services vs. big web
services: making the right architectural decision”, In

Proc. of the 17th international conference on World

Wide Web (WWW ‘08), pages 805–814, New York,
NY, USA, 2008. ACM.

[21] Draft ETSI TS 102 690 V0.13.3 (2011-07) Technical

Specification.

[22] J. Yim, Y. Choi, and B. Lee “Third Party Call

Control in IMS using Parlay Web Service Gateway”,

Advanced Communication Technology, 2006.

ICACT 2006. The 8th International Conference, 20-
22 Feb. 2006, pp. 221 – 224.

[23] McAffer J, VanderLei P, Archer S., “OSGi and

Equinox: Creating Highly Modular Java Systems”,
Addison-Wesley; Upper Saddle River; NJ; 2010.

[24] http://openmobilealliance.org/about-oma/work-
program/device-management/

[25] http://www.etsi.org/plugtests/COAP2/Presentations/
03_ETSI_M2M_oneM2M.pdf

AUTHOR BIOGRAPHY

Nguyen Tai Hung (PhD) is a

lecturer of the Faculty of electronic
& telecommunication at the Hanoi
University of Science &

Technology in Hanoi, Vietnam. He

got his Master and PhD degrees,
both in communication engineering,

from same university in 2001 and
2007, respectively. He is the

(co)author of around thirty of scientific papers/articles
and a national research project in the fields of Internet

Engineering and Next Generation Networks on

international journals and conference proceeding. He
spent a half of year in 2008 with Fraunhofer Institute of

Fokus in Berlin, Germany for conducting the research
project of service development for 3G/NGN networks.

 Based on his more than 10 years of experience in the

teaching complex IT and telecommunication
technologies to different courses, from beginning to the

most advanced levels, Dr. Nguyen Tai Hung gains an
extensive knowledge in field of the Next Generation

Networks and the Future Internet.

