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Abstract: The problem of posterior inference for individual
documents is particularly important in topic models. However,
it is often intractable in practice. Many existing methods
for posterior inference such as variational Bayes, collapsed
variational Bayes and collapsed Gibbs sampling do not have
any guarantee on either quality or rate of convergence. The
online maximum a posteriori estimation (OPE) algorithm has
more attractive properties than other inference approaches.
In this paper, we introduced four algorithms to improve OPE
(namely, OPE1, OPE2, OPE3, and OPE4) by combining two
stochastic bounds. Our new algorithms not only preserve the
key advantages of OPE but also can sometimes perform signif-
icantly better than OPE. These algorithms were employed to
develop new effective methods for learning topic models from
massive/streaming text collections. Empirical results show that
our approaches were often more efficient than the state-of-the-
art methods.

Keywords: Topic models, posterior inference, online maximum
a posteriori estimation (OPE), large-scale learning.

I. INTRODUCTION

Topic modeling provides a framework to model high-
dimensional sparse data. It can also be seen as an unsu-
pervised learning approach in machine learning. One of
the most famous topic models, latent Dirichlet allocation
(LDA) [1], has been successfully applied in a wide range
of areas including text modeling [2], bioinformatics [3, 4],
history [5–7], politics [2, 8], and psychology [9].

Originally, LDA is applied to model a corpus of text
documents in which each document is assumed as a random
mixture of topics and a topic is a distribution over words.
The learning problem is finding the topic distribution of
each document and the distribution of words in topics.
When learning these parameters, we have to deal with
an inference step which is to find the topic distribution
of a document with the known distributions of words

in topics. Inference problem is, in essence, estimating
posterior distributions for individual documents and it is
the core problem in LDA. This problem is considered
by many researchers in recent years and various learning
algorithms such as variational Bayes (VB) [1, 10, 11],
collapsed variational Bayes (CVB) [12, 13], CVB0 [14] and
collapsed Gibbs sampling (CGS) [7, 15], online maximum a
posteriori estimation (OPE) [16], BP-sLDA [17] have been
proposed. Inference can be formulated as an optimization
problem, ideally, it is a convex optimization. However, the
convexity is controlled by a prior parameter which leads
to a non-convex problem in practice. Also, it has been
proved that the inference problem is NP-hard, hence it is
intractable [18]. Among mentioned methods, only OPE has
a theoretical guarantee on fast convergence. We investigate
the operation of OPE and enhance OPE in terms of different
quality measures.

The main contributions of our paper are as follows.
First, we investigate the operation of OPE, figure out
basic features, and use them to propose new algorithms
which are called OPE1, OPE2, OPE3, and OPE4. Those
algorithms are derived from combining the upper and lower
stochastic bounds of the true objective function. Second, we
introduce new methods for learning LDA from text data.
From extensive experiments on two large corpora, New
York Times and PubMed, we find that some of our methods
can achieve high performance in several important mea-
surements usually used in topic models. Third, our ideas
of combining the upper and lower stochastic bounds to
solve a non-convex inference problem is novel. It has shown
effectiveness in topic modeling. Therefore, we believe that
this idea can be used in various situations to deal with non-
convex optimization.

The paper is organized into six sections. Section II
reviews related works and background. Section III ex-
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Figure 1. LDA, represented as a graphical model.

plicitly describes our proposed approaches. Experimental
results are discussed in Section IV. Section V shows the
convergence of our new algorithms and conclusion is in
Section VI.

Notations: Throughout the paper, we use the following
conventions and notations. Bold faces denote vectors or
matrices, xi the i-th element of vector x, and Ai j the
element at row i and column j of matrix A. The unit
simplex in the n-dimensional Euclidean space is denoted
as ∆n = {x ∈ Rn: x ≥ 0,

∑n
k=1 xk = 1}, and its

interior is denoted as ∆n. We work with text collections
of V dimensions (dictionary size). Each document d is
represented as a frequency vector, d = (d1, .., dV )T , where
dj represents the frequency of the term j in d. Denote nd
as the length of d, i.e., nd =

∑
j dj . The inner product of

vectors u and v is denoted as 〈u, v〉. I (x) is the indicator
function which returns 1 if x is true, and 0 otherwise, and
E(X) is the expectation of the random variable X .

II. POSTERIOR INFERENCE

LDA is a generative model for modeling texts and
discrete data. It assumes that a corpus is composed from K

topics, β = (β1, . . . , βK ), each of which is a sample from
a V -dimensional Dirichlet distribution, Dirichlet(η). Each
document d is a mixture of those topics and is assumed to
arise from the following generative process:

1) Draw θd |α ∼ Dirichlet(α).
2) For the n-th word of d,

• draw topic index zdn |θd ∼ Multinomial(θd),
• draw word wdn |zdn, β ∼ Multinomial(βzdn

).
Each topic mixture θd = (θ1, . . . , θK ) represents the

contributions of topics to document d, θk = Pr(z = k |d),
while βk j = Pr(w = j |z = k) shows the contribution
of term j to topic k. Note that θd ∈ ∆K , βk ∈ ∆V ,∀k.
θd and zd are respectively hidden and local variables for
each document d. LDA further assumes that θ and β

are samples of Dirichlet distributions, more specifically,
θd ∼ Dirichlet(α) and βk ∼ Dirichlet(η).

The problem of posterior inference for each document d,
given a model {β, α}, is to estimate the full joint distribu-
tion Pr(zd,θd, d |β, α). Direct estimation of this distribution

is an NP-hard in the worst case [18]. Existing inference
approaches use different schemes. Some methods such as
VB, CVB, and CVB0 try to estimate the distribution by
maximizing a lower bound of the likelihood Pr(d |β, α),
whereas CGS tries to estimate Pr(z |d, β, α). They are being
popularly used in topic modeling, but we have not seen any
theoretical analysis about how fast they do inference for
individual documents.

Other good candidates for posterior inference in-
cludes concave-convex procedure (CCCP) [19], stochas-
tic majorization-reduction (SMM) [20], Frank-Wolfe
(FW) [21], online Frank-Wolfe (OFW) [22], and threshold
linear inverse (TLI) [23]. One might employ CCCP and
SMM to do inference in topic models. Those two algo-
rithms are guaranteed to converge to a stationary point of
the inference problem. However, the rates of convergence
of CCCP and SMM are not clearly analyzed in non-convex
circumstances such as inferences in topic models.

We consider the following maximum a posteriori (MAP)
estimation of topic mixture for a given document d:

θ∗ = arg max
θ∈∆K

Pr(θ, d |β, α)

= arg max
θ∈∆K

Pr(d |θ, β)Pr(θ |α). (1)

For a given document d, the probability that a term j
appears in d can be expressed as

Pr(w = j |d) =
K∑
k=1

Pr(w = j |z = k)Pr(z = k |d) =
K∑
k=1

βk jθk .

Hence, the log likelihood of d is

log Pr(d |θ, β) = log
∏
j

Pr(w = j |d)d j

=
∑
j

dj log Pr(w = j |d)

=
∑
j

dj log
K∑
k=1

θk βk j .

Recall that the density of the exchangeable K-dimensional
Dirichlet distribution with the parameter α being P(θ |α) ∝∏K

k=1 θ
α−1
k

. Therefore, problem (1) is equivalent to the
following:

θ∗ = arg max
θ∈∆K

∑
j

dj log
K∑
k=1

θk βk j + (α − 1)
K∑
k=1

log θk . (2)

It is shown that this problem is NP-hard in the worst
case when α < 1 by the authors in [18]. In the case of
α ≥ 1, one can easily show that problem (2) is a concave
optimization, and therefore can be solved in polynomial
time. Unfortunately, in practice, the parameter α is often
small, e.g., α < 1, which causes (2) to be a non-concave
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Algorithm 1: OPE: Online MAP estimation
Input: document d and model {β, α}
Output: θ that maximizes

f (θ) = ∑
j dj log

∑K
k=1 θk βk j + (α − 1)∑K

k=1 log θk
Initialize θ1 arbitrarily in ∆K
for t = 1,2, . . . ,∞ do

Pick ft uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Ft := 2

t

∑t
h=1 fh

et := arg maxx∈∆K < F
′
t (θ t ), x >

θ t+1 := θ t + et−θt

t

end for

optimization. In this paper, we consider problem (2) in case
the hyper-parameter α < 1.

The OPE algorithm for doing inference of topic mixtures
for documents was developed by Than and Doan in [16].
Details of OPE are presented in Algorithm 1. The operation
of OPE is simple. It solves (2) by iteratively finding a vertex
of ∆K as a direction to the optimal solution. A good vertex
at each iteration is decided by assessing the stochastic
approximations of the gradient of objective function f (θ).
When the number of iterations t goes to infinity, value of θ t
in OPE will approach a local maximal/stationary point. We
also find out that OPE, unlike CCCP and SMM, is guar-
anteed to converge very fast to a local maximal/stationary
point of problem (2).

Each iteration of OPE requires modest arithmetic op-
erations, thus OPE is significantly more efficient than
CCCP and SMM. Having a clear guarantee helps OPE to
overcome many limitations of VB, CVB, CVB0, and CGS.
Furthermore, OPE is so general that it can be easily used
and applied in a wide range of contexts, including MAP
estimation and non-convex optimization. Therefore, OPE
overcomes drawbacks of FW, OFW, and TLI.

III. CHARACTERISTICS OF OPE AND NEW VARIANTS

In this section, we figure out more important character-
istics of OPE, some were investigated in [16]. OPE can
work well with a complex non-convex objective function
as follows:

f (θ) =
∑
j

dj log
K∑
k=1

θk βk j + (α − 1)
K∑
k=1

log θk .

Denote

g1(θ) =
∑
j

dj log
K∑
k=1

θk βk j,

g2(θ) = (α − 1)
K∑
k=1

log θk .

(a) F1(θ) = g1(θ) (b) F1(θ) = g2(θ)

Figure 2. Two cases of initializing stochastic approximating bounds of Ft .

The true objective function f (θ) can be rewritten as

f (θ) = g1(θ) + g2(θ).
We also find that g1(θ) is concave while g2(θ) is non-
concave when α < 1, then f (θ) is non-concave in case
α < 1.

In general, the optimization theory has encountered many
difficulties in solving non-convex optimization problems.
Many methods are good in theory but inapplicable in
practice. Therefore, instead of directly solving the non-
convex optimization with the true objective function f (θ),
OPE constructs a sequence of the stochastic functions Ft (θ)
that approximates the objective function of interest by
uniformly choosing from {g1(θ),g2(θ)} in each iteration
t. It is guaranteed that Ft converges to f when t →∞.

OPE is a stochastic optimization algorithm, can be im-
plemented in a straightforward manner, is computationally
efficient and suitable for problems that are large in terms
of data and/or parameters. Than and Doan in [16] experi-
mentally and theoretically showed the effectiveness of OPE
when applying to the posterior inference of LDA.

By analyzing OPE for more interesting features, we
noticed that

g1(θ) =
∑
j

dj log
K∑
k=1

θk βk j < 0,

g2(θ) = (α − 1)
K∑
k=1

log θk > 0,

and ft (θ) was picked from {g1(θ), g2(θ)}. Hence, in
the first iteration, if we choose f1 = g1 then F1 < f ,
which leads the sequence of stochastic functions Ft (θ)
approaching f (θ) from below, or it is a lower bound
for f (θ). In contrast, if we choose f1 = g2 in the first
iteration, then F1 > f , and the sequence of stochastic
functions Ft (θ) approaches f (θ) from above, or it is a upper
bound for f (θ) (Figure 2). New perspectives lead us to
improvements of OPE. Although OPE is a good candidate
for solving posterior inference in topic models, we want
to enhance OPE in several different ways. It makes sense
that having two stochastic approximating sequences from
above and below is better than having one. Therefore, we
construct two sequences that both converge to f , one begins
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(a) Using upper bound and lower
bound of the objective function

(b) Choose the higher point at an
iteration

Figure 3. Basic ideas for improving OPE.

Algorithm 2: OPE1: Uniform choice from two stochastic
bounds
Input: document d and model {β, α}
Output: θ that maximizes

f (θ) = ∑
j dj log

∑K
k=1 θk βk j + (α − 1)∑K

k=1 log θk
Initialize θ1 arbitrarily in ∆K
f l1 :=

∑
j dj log

∑K
k=1 θk βk j ;

f u1 := (α − 1)∑K
k=1 log θk

for t = 2,3, ...∞ do
Pick f ut uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Ut := 2

t

∑t
h=1 f u

h

eut := arg maxx∈∆K 〈U
′
t (θ t ), x〉

θut+1 := θ t +
eut −θt

t

Pick f lt uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Lt := 2

t

∑t
h=1 f l

h

elt := arg maxx∈∆K 〈L
′
t (θ t ), x〉

θlt+1 := θ t +
elt−θt

t

θ t+1 := pick uniformly from {θut+1,θ
l
t+1}

end for

with g1, called the sequence {Lt }, and the other begins
with g2, called the sequence {Ut } (Figure 3). Using both
two stochastic sequences at each iteration gives us more
information about the objective function f (θ), so that we
can get more chances to reach the maximum of f (θ). In
this section, we show four different ideas to improve OPE
corresponding to four new algorithms, called OPE1, OPE2,
OPE3 and OPE4. Their differences come from the way we
combine two approximating sequences {Ut } and {Lt }.

In designing OPE1, we construct two stochastic se-
quences {Ut (θ)} and {Lt (θ)} which are similar to {Ft (θ)}
in OPE. Then, we obtain two sequences {θut } and {θlt }. We
pick θ t uniformly from {θut ,θlt }. OPE1 aims at increasing
the randomness of the stochastic algorithm. Getting the idea
from a random forest, which constructs a lot of random
trees to obtain the average result of all trees, we use
randomness to create plenty of choices in our algorithm. We
hope that, with full randomness, OPE1 can jump over local
stationary points to reach the highest local stationary point.

Algorithm 3: OPE2: Smooth random choice from two
stochastic bounds
Input: document d and model {β, α}
Output: θ that maximizes

f (θ) = ∑
j dj log

∑K
k=1 θk βk j + (α − 1)∑K

k=1 log θk
Initialize θ1 arbitrarily in ∆K
f l1 :=

∑
j dj log

∑K
k=1 θk βk j ;

f u1 := (α − 1)∑K
k=1 log θk

for t = 2,3, ...∞ do
Pick f ut uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Ut := 2

t

∑t
h=1 f u

h

eut := arg maxx∈∆K 〈U
′
t (θ t ), x〉

θut+1 := θ t +
eut −θt

t

Pick f lt uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Lt := 2

t

∑t
h=1 f l

h

elt := arg maxx∈∆K 〈L
′
t (θ t ), x〉

θlt+1 := θ t +
elt−θt

t

θ t+1 := θut+1 with probability
exp f (θu

t+1)
exp f (θu

t+1)+exp f (θl
t+1)

and
θ t+1 := θlt+1 with probability

exp f (θl
t+1)

exp f (θu
t+1)+exp f (θl

t+1)
end for

Continuing with the idea of raising the randomness, we
pick θ t from {θut ,θlt } with probabilities depending on the
value of { f (θut ), f (θlt )}. The higher the value of f is, the
higher the probability that the point will be chosen. The
probability of selection of θ t in OPE2 is smoother than the
uniform probability in OPE1. We obtain OPE2 which is
detailed in Algorithm 3.

The third idea to improve OPE is based on the greedy
approach. We always compare two values of f (θut ) and
f (θlt ) and take the point corresponding to the highest value
of f in each iteration (Figure 2). OPE3 works differently
from the original OPE. OPE constructs only one sequence
{θ t } while OPE3 creates three sequences {θut }, {θlt }, and
{θ t } depending on each other. Even though the structure
of the sequence {θ t } really changes, OPE’s good properties
remain in OPE3.

Another inference algorithm called OPE4 was proposed.
We approximate the true objective function f (θ) by a linear
combination of the upper bound Ut and the lower bound
Lt with a suitable parameter ν, Ft := νUt + (1 − ν)Lt . The
usage of both bounds is stochastic in nature and helps us
reduce the possibility of getting stuck at a local stationary
point. This is an efficient approach for escaping saddle
points in non-convex optimization. Our new variant seems
to be more appropriate and robust than the OPE. Existing
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Algorithm 4: OPE3: Higher-value choice from stochastic
bounds
Input: document d and model {β, α}
Output: θ that maximizes

f (θ) = ∑
j dj log

∑K
k=1 θk βk j + (α − 1)∑K

k=1 log θk
Initialize θ1 arbitrarily in ∆K
f l1 :=

∑
j dj log

∑K
k=1 θk βk j ;

f u1 := (α − 1)∑K
k=1 log θk

for t = 2,3, ...∞ do
Pick f ut uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Ut := 2

t

∑t
h=1 f u

h

eut := arg maxx∈∆K 〈U
′
t (θ t ), x〉

θut+1 := θ t +
eut −θt

t

Pick f lt uniformly from
{∑j dj log

∑K
k=1 θ j βk j; (α − 1)∑K

k=1 log θk}
Lt := 2

t

∑t
h=1 f l

h

elt := arg maxx∈∆K 〈L
′
t (θ t ), x〉

θlt+1 := θ t +
elt−θt

t

θ t+1 := arg maxθ∈{θu
t+1 ,θ

l
t+1 } f (θ)

end for

methods become less relevant in high dimensional non-
convex optimization. The theoretical justification of OPE4
is motivated by ensuring rapid escape from saddle points.

Similar to OPE, OPE4 constructs the sequence {θ t }
converging to θ∗. OPE4 also aims at increasing the ran-
domness, but it works differently compared to OPE. While
OPE constructs only one sequence of function Ft , OPE4
constructs three sequences Ut, Lt , and Ft , in which Ft

depends on Ut and Lt . Therefore, the structure of the main
sequence Ft is actually changed.

One can recognize that our new algorithms double the
computation of OPE at each iteration. However, the rates
of convergence of OPE3 and OPE4 remain the same as of
OPE as analyzed in the next section. That means, our new
algorithms still preserve the key features of OPE.

IV. EXPERIMENTS

In this section, we investigate the practical performance
of our new variants. Since OPE, OPE1, OPE2, OPE3, and
OPE4 can play the role as the core subroutine of large-scale
learning methods for LDA, we will investigate the perfor-
mance of these inference algorithms through ML-OPE and
Online-OPE [24] by replacing their inference core. We also
see how helpful our new algorithms for posterior inference
are. Replacing OPE by our new variants in ML-OPE and
Online-OPE, we obtain eight new algorithms for learning
LDA, called ML-OPE1, Online-OPE1, ML-OPE2, Online-

Algorithm 5: OPE4: Linear combination of stochastic
bounds
Input: document d and model {β, α}
Output: θ that maximizes

f (θ) = ∑
j dj log

∑K
k=1 θk βk j + (α − 1)∑K

k=1 log θk
Initialize θ1 arbitrarily in ∆K
f l1 :=

∑
j dj log

∑K
k=1 θk βk j ;

f u1 := (α − 1)∑K
k=1 log θk

for t = 2,3, ...∞ do
Pick f ut uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Ut := 2

t

∑t
h=1 f u

h

Pick f lt uniformly from
{∑j dj log

∑K
k=1 θ j βk j ; (α − 1)∑K

k=1 log θk}
Lt := 2

t

∑t
h=1 f l

h

Ft := ν.Ut + (1 − ν)Lt

et := arg maxx∈∆K < F
′
t (θ t ), x >

θ t+1 := θ t + et−θt

t

end for

TABLE I
DATASETS FOR EXPERIMENT
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Algorithm 4 OPE3: Higher-value choice from stochastic
bounds
Input: document d and model {β, α}
Output: θ that maximizes f (θ) = ∑

j dj log
∑K

k=1 θk βk j +

(α − 1)∑K
k=1 log θk

Initialize θ1 arbitrarily in ∆K
f l1 :=

∑
j dj log

∑K
k=1 θk βk j ; f u1 := (α − 1)∑K

k=1 log θk

for t = 2,3, ...∞ do
Pick f ut uniformly from {∑j dj log

∑K
k=1 θ j βk j ; (α−

1)∑K
k=1 log θk}

Ut := 2
t

∑t
h=1 f u

h

eut := arg maxx∈∆K 〈U
′
t (θ t ), x〉

θut+1 := θ t +
eut −θt

t

Pick f lt uniformly from {∑j dj log
∑K

k=1 θ j βk j; (α −
1)∑K

k=1 log θk}
Lt := 2

t

∑t
h=1 f l

h

elt := arg maxx∈∆K 〈L
′
t (θ t ), x〉

θlt+1 := θ t +
elt−θt

t

θ t+1 := arg maxθ∈{θu
t+1 ,θ

l
t+1 } f (θ)

end for

constructs three sequences Ut, Lt , and Ft , in which Ft

depends on Ut and Lt . Therefore, the structure of the main
sequence Ft is actually changed.

One can recognize that our new algorithms double the
computation of OPE at each iteration. However, the rates
of convergence of OPE3 and OPE4 remain the same as of
OPE as analyzed in the next section. That means, our new
algorithms still preserve the key features of OPE.

IV. EXPERIMENTS

In this section, we investigate the practical performance
of our new variants. Since OPE, OPE1, OPE2, OPE3, and
OPE4 can play the role as the core subroutine of large-scale
learning methods for LDA, we will investigate the perfor-
mance of these inference algorithms through ML-OPE and
Online-OPE [24] by replacing their inference core. We also
see how helpful our new algorithms for posterior inference
are. Replacing OPE by our new variants in ML-OPE and
Online-OPE, we obtain eight new algorithms for learning
LDA, called ML-OPE1, Online-OPE1, ML-OPE2, Online-
OPE2, ML-OPE3, Online-OPE3, ML-OPE4, and Online-
OPE4. Our results provide comparisons between OPE and
these four new variants of OPE.

1. Datasets

We used the two large corpora as shown in Table I.
The PubMed dataset consists of 330,000 articles from the

Algorithm 5 OPE4: Linear combination of stochastic
bounds
Input: document d and model {β, α}
Output: θ that maximizes f (θ) = ∑

j dj log
∑K

k=1 θk βk j +

(α − 1)∑K
k=1 log θk

Initialize θ1 arbitrarily in ∆K
f l1 :=

∑
j dj log

∑K
k=1 θk βk j ; f u1 := (α − 1)∑K

k=1 log θk

for t = 2,3, ...∞ do
Pick f ut uniformly from {∑j dj log

∑K
k=1 θ j βk j ; (α −

1)∑K
k=1 log θk}

Ut := 2
t

∑t
h=1 f u

h

Pick f lt uniformly from {∑j dj log
∑K

k=1 θ j βk j ; (α −
1)∑K

k=1 log θk}
Lt := 2

t

∑t
h=1 f l

h

Ft := ν.Ut + (1 − ν)Lt

et := arg maxx∈∆K < F
′
t (θ t ), x >

θ t+1 := θ t + et−θt

t

end for

TABLE I
DATASETS FOR EXPERIMENT

Data set No.docs No.terms No.doc train No.doc test
New York Times 300,000 141,444 290,000 10,000

PubMed 330,000 100,000 320,000 10,000

PubMed Central and the New York Times (NYT) dataset
consists of 300,000 news pieces 1. Each of the learning
methods are run five times on each dataset and average
results are reported.

2. Parameter settings

To compare our new methods with OPE, all free param-
eters receive the same values as in [16].

• Model parameters: The number of topics K = 100,
the hyper-parameters α = 1

K and η = 1
K . These

parameters are commonly used in topic models.
• Inference parameters: The number of iterations was

chosen as T = 20.
• Learning parameters: Mini-batch size S = |Ct | =

5000. κ = 0.9 and τ = 1 adapted best for existing
inference methods. The best value for parameter ν in
OPE4 was selected from {0.01,0.1,0.2, . . . ,0.9,0.99}
for each experiment.

1The datasets were taken from http://archive.ics.uci.edu/ml/datasets
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OPE2, ML-OPE3, Online-OPE3, ML-OPE4, and Online-
OPE4. Our results provide comparisons between OPE and
these four new variants of OPE.

1. Datasets

We used the two large corpora as shown in Table I.
The PubMed dataset consists of 330,000 articles from the
PubMed Central and the New York Times (NYT) dataset
consists of 300,000 news pieces1. Each of the learning
methods are run five times on each dataset and average
results are reported.

2. Parameter Settings

To compare our new methods with OPE, all free parame-
ters receive the same values as in [16]. Below are parameter
settings:

◦ Model parameters: The number of topics K = 100,
the hyper-parameters α = 1

K and η = 1
K . These

parameters are commonly used in topic models.

1The datasets were taken from http://archive.ics.uci.edu/ml/datasets.
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Figure 4. Results of new algorithms compared with the OPE. It can be seen that some new algorithms still have better performance than that of OPE.

◦ Inference parameters: The number of iterations was
chosen as T = 20.

◦ Learning parameters: Mini-batch size S = |Ct | =
5000. κ = 0.9 and τ = 1 adapted best for existing
inference methods. The best value for parameter ν in
OPE4 was selected from {0.01,0.1,0.2, . . . ,0.9,0.99}
for each experiment.

3. Evaluation Measures

We used two measures: Predictive Probability [7] and
NPMI [25]. Predictive probability measures the predictabil-
ity and generalization of a model to new data, while NPMI
evaluates semantic quality of an individual topic. Details of
the measures are presented in Appendix A and B.

4. Evaluation Results

Figure 4 and Figure 5 present evaluation results. We split
the results into two figures corresponding to the measures.

Variants of OPE aim to seek the parameter θ that
maximizes a function f (θ) on a simplex using stochastic
bounds. Then its results are used to update parameters of
a model. ML-OPE updates the direct model parameter β

and Online-OPE updates the variational parameter λ. The
quality of the parameter θ found by OPE affects directly
the quality of parameters β and λ.

In practice, OPE is fast and stable. Stability is shown
by the number of iterations T . The predictability level that
OPE obtain after 20 iterations (T = 20) is the same as
after 100 iterations (T = 100). That means OPE converges
very fast. The authors also [16] did experiments by running
OPE for 10 times and observed that obtained results were
not different. We show that fewer iterations are needed to
yield a useful approximation if the rate of convergence is
higher. Improving a fast and stable algorithm is not easy,
we can neither increase the number of iterations nor run it
many times. We need to change the structure of sequences
that OPE uses to maximize the objective function.

Figure 4 shows that OPE1 and OPE2 are working worse
than the remaining algorithms. The way OPE1 and OPE2
work does not increase the randomness of the approxima-
tion. At each iteration, both OPE1 and OPE2 randomly
choose one of the two values in {θu,θl}. Thus, for many
consecutive iterations, we may have selected the values of
θ which actually make the objective function f decrease.
OPE3 overcomes this problem. OPE3 selects the point θ
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Figure 5. Results of new algorithms when compared to OPE on the NPMI measure. It can be seen that the new algorithms are as good as or even
better than OPE.

such that it always increases the value of the objective
function f . Therefore, the quality of the learned parameter
θ is better, then the quality of the parameter β is better.
Notice that the log predictive probability obtained by OPE3
is higher than corresponding results of OPE1 or OPE2.
Similar to OPE3, OPE4 with a fit parameter ν obtains good
result. Although there are differences in results between
methods, the differences are very small. Therefore, in this
case the log predictive probability does not reflect well the
effectiveness of the improvements. Because the log predic-
tive probability depends on the quality of the parameter
β of ML-OPE and Online-OPE and it demonstrates that
the quality of the parameter θ is not improved after the
inference process.

NPMI reveals evidently the quality of the parameter θ
learned through five algorithms. Figure 5 shows that NPMI
is significantly improved by these new OPE variants.

We find out that OPE1 obtains the poorest result. OPE2
and OPE3 are better than OPE. And OPE4 shows the best
results. The idea of OPE2 comes from the combination of
OPE1 and OPE3 (OPE2 is a hybrid algorithm combining
OPE1 and OPE3). OPE2 chooses the parameter θ with a

probability depending on the value of the function f (θ)
at two bounds (the higher the value of the function f (θ)
at a point is, the higher the probability at that point is).
Thus, OPE3 is the same as OPE2 when the probability
at the upper bound is 1 and the probability at the lower
bound is 0. NPMI is computed directly from the learned
parameter θ. It is easy to notice that the quality of the
parameter θ is significantly improved with the construction
of a new approximation of the function f from OPE2 and
OPE3. OPE4 is shown to be more effective when the best
parameter ν is chosen. The parameter θ is appropriately
chosen in our experiments, then OPE4 is more complex
than other algorithms. By adding the appropriate parameter
ν, we have increased the quality of the model because, in
machine learning theory, the more complex the model is,
the higher the accuracy it achieves.

It is easy to see that OPE3 makes ML-OPE3 and Online-
OPE3 become more efficient. OPE3 demonstrates our idea
of using two random sequences of functions to approximate
the objective function f (θ). The idea of increasing the
randomness and the greedy of the algorithm is exploited
here. Firstly, two random sequences of function are used
to raise our participants and information relevant to the
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Figure 6. OPE4 with different values of ν using the Predictive Probability measure.

objective function. Hence, in the next iteration, we have
more choices in θ t . Secondly, choosing θ t from {θut ,θlt }
makes the value of f (θ) higher after each iteration, that
comes from the idea of greedy algorithms. It maybe the
best way to create θ t from {θut ,θlt }. This approach is simple
and there is no need for extra parameters.

In the experiment with OPE4, we introduce the parameter
ν to construct Ft (θ t ) = νUt (θ t ) + (1 − ν)Lt (θ t ). Therefore,
we increase the number of parameters in the model and we
have to choose the parameter ν empirically. The parameter
ν that we used for each dataset is usually 0.01 or 0.99, that
means the stochastic bounds always follow one direction
below or above. OPE4 uses a linear combination of the
upper bound Ut and the lower bound Lt . The bounds Ut

and Lt converge to the objective function f , so the linear
combination Ft improves the convergence speed and the
quality of the approximation.

OPE4 is the simplest way to combine the bounds. We
can utilize OPE4 to invent more complicated combinations
which may result in better approximations. Besides, OPE4
can be expanded by using not only two but also many
stochastic bounds to approximate an objective function,
which is an open approach to investigate. We notice that,
with both measures, OPE3 and OPE4 are better than OPE1
and OPE2, especially when using the NPMI measure.

By changing variables and bound functions, we obtain
two new algorithms (OPE3 and OPE4) that are more effec-

TABLE II
THE BEST VALUE OF ν CHOSEN WITH THE TWO DATASETS VIA THE

TWO MEASURES.

Method Measure New York Times Pubmed
ML-OPE4 LPP ν = 0.6 ν = 0.99
ML-OPE4 NPMI ν = 0.4 ν = 0.99

Online-OPE4 LPP ν = 0.3 ν = 0.8
Online-OPE4 NPMI ν = 0.5 ν = 0.9

tive than OPE. We show that our approach outperforms the
state-of-the-art approaches of posterior inference in LDA.

5. Effect of Parameter ν in OPE4

In Section II, we find out that OPE has many more
good characteristics than existing algorithms. The above
experiments showed that OPE3 and OPE4 outperform OPE.
Especially, we find that OPE4 is the most efficient for
almost all datasets. However, the effectiveness of OPE4
depends on how the parameter ν is chosen. To see the effect
of the parameter ν, we run the algorithm with different
values of ν from the set {0.01,0.1,0.2...0.9,0.99}, because
0 < ν < 1, while the other parameters are fixed (See
Figure 6 and Figure 7).

We show some results obtained by running OPE4 with
different values of ν between 0 and 1. From Figure 6 and
Figure 7, the best values for ν are close to either 1 or 0.5.
Details are presented in Table II.
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Figure 7. OPE4 with different values of ν using the NPMI measure.

OPE4 works efficiently when using the upper bound,
the lower bound, or the average of the two bounds. We
suppose that, when the parameter ν is close to either 0 or 1,
OPE4 works like OPE. The best value of the parameter ν is
calculated from experimental data. By finding the best value
of the parameter ν, OPE4 performs better than OPE, but the
trade-off is the extra running time needed to find the best
value of ν. This step is neccessary, because inappropriate
choices of ν might significantly affect the performance
of OPE4.

V. ANALYSIS OF CONVERGENCE

From extensive experiments, we find that OPE3 and
OPE4 are more efficient than OPE on the two datasets when
applied in two learning methods for LDA. Therefore, we
focused on the convergence of OPE3 and OPE4 algorithms.

Theorem 1 (Convergence of OPE3): Consider the
objective function f (θ) in problem (2), given fixed d, β,
and α. For OPE3, with probability of 1, the following holds:

1) For any θ ∈ ∆K , Ut (θ) and Lt (θ) converge to f (θ)
as t → +∞,

2) θ t converges to a local maximal/stationary point
of f (θ).

Proof: The objective function f (θ) is a non-convex.
The criterion used for the convergence analysis is important

in non-convex optimization. For unconstrained optimization
problems, the gradient norm ‖∇ f (θ)‖ is typically used to
measure the convergence, because ‖∇ f (θ)‖ → 0 captures
the convergence to a stationary point. However, this crite-
rion can not be used for constrained optimization problems.
Instead, we use the “Frank-Wolfe gap” criterion in [26].

Denote

g1(θ) =
∑
j

dj log
K∑
k=1

θk βk j,

g2(θ) = (α − 1)
K∑
k=1

log θk .

Firstly, we consider the sequence {Ut }. Let at and bt
respectively be the number of times that we have already
picked g1 and g2 after t iterations to construct {Ut }.

Note that at + bt = t. Denote St = at − bt . We have

Ut =
2
t
(atg1 + btg2), (3)

Ut − f =
St
t
(g1 − g2), (4)

U ′t − f ′ =
St
t
(g′1 − g′2). (5)
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Since f ut is chosen uniformly from {g1, g2} then

E( f ut ) =
1
2
g1 +

1
2
g2 =

1
2

f ,

E(Ut ) = E(2
t

t∑
h=1

f uh ) =
2
t

t∑
h=1

E( f uh ) =
2
t

t∑
h=1

1
2

f

=
2
t
· t

2
f = f . (6)

So Ut (θ) is an unbiased estimation of f (θ).
For each iteration t of OPE3 we have to pick uniformly

randomly an f ut from {g1, g2}. We make a correspondence
between f ut and a uniformly random variable Xt on {1,−1}.
This correspondence is an one-to-one mapping. So St =
at − bt can be represented as St = X1 + · · · + Xt .

Applying the iterated logarithm in [27] we have St =
O(

√
t log t), suggesting St

t → 0 as t → +∞. Combining this
with (4), we conclude that the sequence Ut → f with the
probability of 1. Also, due to (5), the derivative sequence
U ′t → f ′ as t → +∞. The convergence holds for any θ ∈
∆K .

Consider

〈U ′t (θ t ),
eut − θ t

t
〉 =

= 〈U ′t (θ t ) − f ′(θ t ),
eut − θ t

t
〉 + 〈 f ′(θ t ),

eut − θ t
t
〉

=
St
t2 〈g

′
1(θ t ) − g

′
2(θ t ), eut − θ t〉 + 〈 f ′(θ t ),

eut − θ t
t
〉.

Note that g1 and g2 are Lipschitz continuous on ∆K . Hence
there exists a constant L such that

〈 f ′(z), y − z〉 ≤ f (y) − f (z) + L‖y − z‖2, ∀ y, z ∈ ∆K .

〈 f ′(θ t ),
eut − θ t

t
〉 = 〈 f ′(θ t ),θut+1 − θ t〉
≤ f (θut+1) − f (θ t ) + L‖θut+1 − θ t ‖2

= f (θut+1) − f (θ t ) + L‖ e
u
t − θ t

t
‖2.

We have θ t+1 := arg maxθ∈{θu
t+1 ,θ

l
t+1 } f (θ) so

f (θut+1) ≤ f (θ t+1).

Since eut and θ t belong to ∆K , the quantity |〈g′1(θ t ) −
g′2(θ t ), eut − θ t〉| and ‖eut − θ t ‖2 are upper-bounded for any
t. Therefore, there exists a constant c1 > 0 such that

〈U ′t (θ t ),
eut − θ t

t
〉 ≤ c1

|St |
t2 + f (θ t+1) − f (θ t ) + c1L

t2 . (7)

Summing both sides of (7) for all t, we have
+∞∑
t=1

1
t
〈U ′t (θ t ), eut − θ t〉

≤
+∞∑
t=1

c1
|St |
t2 + f (θ+∞) − f (θ1) +

+∞∑
t=1

c1L
t2 . (8)

Because f (θ) is bounded then f (θ+∞) is bounded.

Note that St = O(
√

t log t) [27], hence
∑+∞

t=1 c1
|St |
t2

converges with the probability of 1 and
∑+∞

t=1
L
t2 is also

bounded. Therefore, the right-hand side of (8) is finite.

In addition, 〈U ′t (θ t ), eut 〉 > 〈U ′t (θ t ),θ t〉 for any t > 0
because of eut = arg maxx∈∆K 〈U ′t (θ t ), x〉. Therefore, we
obtain the following:

0 ≤
+∞∑
t=1

1
t
〈U ′t (θ t ), eut − θ t〉 < ∞. (9)

In other words, the series
∑+∞

t=1
1
t 〈U ′t (θ t ), eut − θ t〉 con-

verges to a finite constant. Note that 〈U ′t (θ t ), eut − θ t〉 ≥ 0
for any t. If there exists a constant c2 > 0 satisfying
〈U ′t (θ t ), eut − θ t〉 ≥ c2 for an infinite number of t’s, then
the series

∑+∞
t=1

1
t 〈U ′t (θ t ), eut − θ t〉 could not converge to a

finite constant, which is in contrary to (9). Therefore,

〈U ′t (θ t ), eut − θ t〉 → 0 as t → +∞. (10)

Because of U ′t → f ′ as t →∞ and U ′t , f ′ are continuous,
combining with (10) we have

〈 f ′(θ t ), eut − θ t〉 → 0 as t → +∞. (11)

Using the “Frank-Wolfe gap” criterion in [26], from (11)
we have θ t → θ∗ as t → +∞. In other words, θ t converges
in term of the probability to a stationary point θ∗ of f (θ).

�

Theorem 2 (Convergence of OPE4): Consider the
objective function f (θ) in problem (2), given fixed d, β, α.
For OPE4, with probability of 1, the following holds:

1) For any θ ∈ ∆K , Ft (θ) converges to f (θ) as t → +∞,
2) θ t converges to a local maximal/stationary point of

f (θ).

Proof: Denote

g1(θ) =
∑
j

dj log
K∑
k=1

θk βk j,

g2(θ) = (α − 1)
K∑
k=1

log θk .

Let at and bt respectively be the number of times that we
have already picked g1 and g2 after t iterations to construct
Ut . Similarly, let ct and dt respectively be the number of
times that we have already picked g1 and g2 after t iterations
to construct Lt .
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Since f ut is chosen uniformly from {g1,g2} then

E( f ut ) = E( f lt ) =
1
2
g1 +

1
2
g2 =

1
2

f ,

E(Ut ) = E(2
t

t∑
h=1

f uh ) =
2
t

t∑
h=1

E( f uh ) =
2
t

t∑
h=1

1
2

f = f ,

E(Lt ) = E(2
t

t∑
h=1

f lh) =
2
t

t∑
h=1

E( f lh) =
2
t

t∑
h=1

1
2

f = f ,

E(Ft ) = νE(Ut ) + (1 − ν)E(Lt ) = ν f + (1 − ν) f = f .

Denote

Su
t = at − bt,

Sl
t = ct − dt,

St = max{|Su
t |, |Sl

t |}.
We have

Ut =
2
t
(atg1 + btg2) at + bt = t

Lt =
2
t
(ctg1 + dtg2) ct + dt = t

Ut − f =
Su
t

t
(g1 − g2) Lt − f =

Sl
t

t
(g1 − g2)

U ′t − f ′ =
Su
t

t
(g′1 − g′2) L ′t − f ′ =

Sl
t

t
(g′1 − g′2).

We obtain

Ft = νUt + (1 − ν)Lt

Ft − f = ν(Ut − f ) + (1 − ν)(Lt − f )

= (ν Su
t

t
+ (1 − ν)S

l
t

t
)(g1 − g2)

F ′t − f ′ = (ν Su
t

t
+ (1 − ν)S

l
t

t
)(g′1 − g′2).

So Ft is an unbiased estimation of f .

Applying the iterated logarithm in [27] we have Su
t =

O(
√

t log t) and Sl
t = O(

√
t log t), suggesting Su

t

t → 0 and
Sl
t

t → 0 as t → +∞. Hence, we conclude that the sequence
Ut → f and the derivative sequence U ′t → f ’ as t → +∞.
Similarly, we have Lt → f and the derivative sequence
L ′t → f ’ as t → +∞.

Consider

〈F ′t (θ t ),
et − θ t

t
〉 =

= 〈F ′t (θ t ) − f ′(θ t ), et − θ tt
〉 + 〈 f ′(θ t ), et − θ tt

〉 =

= 〈(ν Su
t

t
+ (1 − ν)S

l
t

t
)(g′1(θ t ) − g′2(θ t )),

et − θ t
t
〉+

+ 〈 f ′(θ t ), et − θ tt
〉.

Note that g1 and g2 are Lipschitz continuous on ∆K .
Hence there exists a constant L such that

〈 f ′(z), y − z〉 ≤ f (y) − f (z) + L‖y − z‖2∀y, z ∈ ∆K ,

〈 f ′(θ t ), et − θ tt
〉 = 〈 f ′(θ t ),θ t+1 − θ t〉
≤ f (θ t+1) − f (θ t ) + L‖θ t+1 − θ t ‖2

= f (θ t+1) − f (θ t ) + L‖ et − θ t
t
‖2.

Since et and θ t belong to ∆K then 〈g′1(θ t ) − g′2(θ t ), et −
θ t〉 and ‖eut − θ t ‖2 are bounded. Therefore, there exists a
constant c1 > 0 such that

〈F ′t (θ t ),
et − θ t

t
〉 ≤ c1

St
t2 + f (θ t+1) − f (θ t ) + c1L

t2 . (12)

Summing both sides of (12) for all t we have

+∞∑
t=1

1
t
〈F ′t (θ t ), et − θ t〉

≤
+∞∑
t=1

c1
St
t2 + f (θ∗) − f (θ1) +

+∞∑
t=1

c1L
t2 . (13)

Because f (θ) is bounded then f (θ∗) is bounded.

Note that St = O(
√

t log t) [27], so
∑+∞

t=1 c1
St
t2 converges

with the probability of 1 and
∑+∞

t=1
L
t2 is also bounded.

Hence, the right-hand side of (13) is finite.

In addition, 〈F ′t (θ t ), et〉 > 〈F ′t (θ t ),θ t〉 for any t > 0
because of et = arg maxx∈∆K 〈F ′t (θ t ), x〉. Therefore, we
obtain the following

0 ≤
+∞∑
t=1

1
t
〈F ′t (θ t ), et − θ t〉 < +∞. (14)

In other words, the series
∑+∞

t=1
1
t 〈F ′t (θ t ), et −θ t〉 converges

to a finite constant. Note that 〈F ′t (θ t ), et − θ t〉 ≥ 0
for any t. If there exists a constant c3 > 0 satisfying
〈F ′t (θ t ), et − θ t〉 ≥ c3 for an infinite number of t’s, then
the series

∑+∞
t=1

1
t 〈F ′t (θ t ), et − θ t〉 could not converge to a

finite constant, which is in contrary to (14). Therefore,

〈F ′t (θ t ), et − θ t〉 → 0 as t → +∞. (15)

Because of F ′t → f ′ as t →∞ and F ′t , f ′ are continuous,
combining with (15) we have

〈 f ′(θ t ), et − θ t〉 → 0 as t → +∞. (16)

Using the ”Frank-Wolfe gap” criterion in [26], we have
θ t → θ∗ as t → +∞. In other words, θ t converges in term
of the probability to a stationary point θ∗ of f (θ). �

The above theorems provide theoretical guarantees on the
fast convergence for our algorithms.
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VI. CONCLUSION

We have discussed how posterior inference for individual
texts in topic models can be done efficiently. We now
provide four theoretically justified algorithms (called OPE1,
OPE2, OPE3, and OPE4) to deal well with this problem.
They all have a theoretical guarantee on fast convergence
rate. OPE3 and OPE4 can do inference faster and more
effectively in practice, and they can be easily extended to a
wide class of probabilistic models. By exploiting four new
variants of OPE carefully, we have derived eight efficient
methods for learning LDA from data streams or large
corpora. As the result, they are good candidates to help
us deal with text streams and big data.
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APPENDIX A
PREDICTIVE PROBABILITY

Predictive Probability shows the predictability and gen-
eralization of a model M on new data. We followed
the procedure in [7] to compute this measure. For each
document in a test dataset, we randomly divided it into two
disjoint parts, wobs and who, with a ratio of 80:20. Next, we
did inference for wobs to get an estimate of E(θobs). Then,
we approximated the predictive probability as

Pr(who |wobs,M) '
∏
(w∈who)

K∑
k=1

E(θobs
k )E(βkw)

Log Predictive Probability = log
Pr(who |wobs,M)

|who |
where M is the model to be measured. We estimated
E(βk) ∝ λk for the learning methods which maintain
a variational distribution (λ) over the topics. The Log
Predictive Probability was averaged from five random splits
of 1000 documents.

APPENDIX B
NPMI

The NPMI measure helps us see the coherence or the
semantic quality of individual topics. According to [28],
NPMI agrees well with human evaluation on the inter-
pretability of topic models. For each topic t, we take the set
{w1,w2, . . . ,wn} of top n terms with highest probabilities.

We then computed

NPMI(t) = 2
n(n − 1)

n∑
j=2

j−1∑
i=1

log P(wj ,wi )
P(wj )P(wi )

− log P(wj,wi) ,

where P(wi,wj) is the probability that terms wi and wj

appear together in a document. We estimated those proba-
bilities from the training data. In our experiments, we chose
top n = 10 terms for each topic. Overall, NPMI of a model
with K topics is averaged as

NPMI =
1
K

K∑
t=1

NPMI(t).
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