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Abstract: In this paper, a new Space-Time Block Coded
Spatial Modulation (SM) scheme based on the Golden Code,
called the Golden Coded Spatial Modulation (GC-SM), is
proposed and analyzed. This scheme still keeps some main
benefits of the Golden Code by satisfying the non-vanishing
Space Time Block Code (STBC) criteria. In the signal con-
stellation domain, the GC-SM spectral efficiency is twice
that of the STBC-SM. In addition, simulation and theoretical
results show that the GC-SM performance surpasses several
SM schemes at the same spectral efficiency and antenna
configuration. Furthermore, we study the impact of channel
spatial correlation on the GC-SM performance. Finally, the
GC-SM detection complexity is studied and compared with
the existing SM schemes.

Keywords: Multiple-input multiple-output, space-time block
code, golden code, spatial modulation.

I. INTRODUCTION

To overcome some Multi-Input Multi-Output (MIMO)
system disadvantages, Mesleh et al. have recently proposed
a Spatial Modulation (SM) scheme [1]. In the SM model,
information bits are conveyed not only by conventional
modulated symbols but also by the indices of transmit
antennas to create a tridimensional (3-D) constellation. At
a time slot, a modulated symbol is transmitted from one
active antenna out of multiple transmit antennas. Therefore,
the SM scheme totally avoids Inter-Channel Interference
(ICI) at its receiver. Furthermore, the SM transmitters need
only one radio frequency (RF) chain for transmission and
require no synchronization among the transmit antennas.
In [2], a Generalized 3-D Constellation design was pro-
posed to enhance the SM system reliability by optimizing
the symbol mapping method at each transmit anntena.
Furthermore, based on a partial channel state information at
the SM transmitter, a Bit-to-Symbol Mapping scheme was
proposed in [3] to improve the SM performance. Although

both mentioned schemes improve the SM performance, the
SM spectral efficiency is still dependable on the number
of transmit antennas, i.e., log2nT where nT is the number
of transmit antennas. Therefore, Jintao et al. proposed the
Generalized Spatial Modulation (GSM) scheme [4] which
increases the SM spectral efficiency by simultaneously
activating more than one transmit antenna. The number
of additional bits carried by the antenna indices increases
to

⌊
log2

(nT
nA

) ⌋
where nA is the number of active antennas.

However, since the GSM scheme requires multiple active
transmit antennas to transmit symbols, its transmitter needs
to utilize the equivalent number of radio frequency chains.
In [5], the authors proposed a Quadrature Spatial Modula-
tion (QSM) scheme utilizing two RF chains. In this model,
by using the extra spatial dimension, the QSM spectral
efficiency increases to log2

(
n2
T

)
+ log2M bits per channel

use (bpcu) where M is the signal constellation order.
Recently, based on multiple signal modulation techniques
for two active antennas, an Enhanced Spatial Modulation
(ESM) scheme have been proposed in [6] to improve the
SM spectral efficiency. However, since the antenna indices
are also an information source, these mentioned schemes’
performances deteriorate under the spatial correlated envi-
ronments.

Recently, various SM schemes have been proposed to
overcome this drawback in the SM [7–9]. These schemes
are robust under the spatial correlation effect by utilizing
the Orthogonal Space Time Block Code (OSTBC) [10].
Basar et al. integrated the Alamouti Space Time Block
Code (STBC) [11] in the SM to create the Space Time
Block Coded Spatial Modulation (STBC-SM) scheme [7]
which achieves the second order transmit diversity. This
scheme not only improves the SM performance but also
requires only a low-complexity detector at its receiver. The
STBC-SM spectral efficiency is 1

2 log2c + log2M (bpcu)
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where c is the number of antenna combinations. Inspired
by the result in [7], Xiaofeng et al. managed to improve the
STBC-SM spectral efficiency by modifying the Alamouti-
STBC and cyclically shifting these matrices in two rows.
The so-called High Rate Space Time Block Coded Spatial
Modulation (STBC-CSM) [8] spectral efficiency becomes
1
2 log2c + log2M (bpcu) where c = b(nT − 1) nT c2p is
the total number of STBC-CSM codewords. In [9], by
utilizing the Spatial Constellation (SC) matrices and the
Alamouti matrix, Le et al. proposed the Spatially Modu-
lated Orthogonal Space Time Block Coding (SM-OSTBC)
scheme. The maximum SM-OSTBC spectral efficiency is(
nT − 2 + log2M

)
(bpcu) when nA = nT . This scheme is

only suitable for the MIMO systems that are equipped with
more than three transmit antennas. However, in these men-
tioned schemes, transmitting the Alamouti-STBC reduces
the spectral efficiency by half than that of the SM. To
overcome this disadvantage, a new SM scheme, called the
DSTTD-SM [12], is proposed to improve the SM spectral
efficiency by applying the Double Space Time Transmit
Diversity in the SM. However, compared with the STBC-
SM and the STBC-CSM, the DSTTD-SM utilizes all four
transmit antennas with all antenna combinations to transmit
symbols. In [13], a Spatially Modulated Space-Time Block
Coding scheme, called DT-SM, is proposed by combining
the SM with the Double Space Time Transmit Diversity
(DSTTD) [14]. This scheme achieves higher spectral ef-
ficiency in the spatial domain than several schemes [7,
9]. However, the DT-SM transmiter implements at least
four RF chains.

Inspired by the works in [12], we propose a new Space-
Time Block Coded Spatial Modulation (SM) scheme based
on the Golden Code, called Golden Coded Spatial Modula-
tion (GC-SM), for four transmit antennas. Compared with
the DSTTD-SM, the GC-SM achieves the same spectral
efficiency while utilizing only two RF chains. Furthermore,
the GC-SM scheme enjoys the full benefits of the Golden
code while improving SM spectral efficiency in the signal
constellation domain. Simulation results show that the GC-
SM scheme outperforms several existing SM-based MIMO
ones at the same spectral efficiency and same antenna
configuration. Furthermore, the theoretical upper bound of
the bit error probability (BEP) is derived to verify the
GC-SM performance. Finally, the GC-SM complexity is
calculated and compared with related SM schemes.

The rest of this paper is organized as follows. The
proposed system model is presented in Section II. The
SC codeword design and the signal detection algorithm
are respectively introduced in Section III and Section IV.
Performance evaluations are carried out in Section V and
conclusions are drawn in Section VI.

Notations: (·)H denotes the transpose of a matrix and
j2 = −1, <(·) and = (·) are the real element and the
imaginary element of a complex number, respectively, and
r∗ is the conjugate number of r .

II. THE PROPOSED SM SYSTEM MODEL

The GC-SM scheme is considered in Figure 1. In this
model, each block of (l + 4m) data bits, coming to the GC-
SM transmitter, is separated in two parts. The first part with
l bits, is mapped into a 4× 2 SC matrix, out of K = 2l SC
matrices in the spatial constellation ΩS while the remaining
4m bits are modulated in M-QAM/ PSK modulators (M =
2m). Then, these modulated symbols are arranged in the
Golden Code structure [15] as follows:

X =
√

1
5

[
ax1 + bx2 ax3 + bx4
cx3 + ax4 dx1 + ex2

]
, (1)

where a = (1 + jσ (θ)), b = (θ − j), c = (1 + jσ (θ)),
d = (1 + jθ), e = (σ (θ) − j), θ = 1+

√
5

2 , σ (θ) = 1−
√

5
2

and j2 = −1. Finally, the 4 × 2 transmitted codeword
C is formed as a product of S and X, i.e., C = SX.
The codeword C will be transmitted from four transmit
antennas within two symbol periods.

The system equation is given by

Y = HC + N = HSX + N, (2)

where H is an nR×4 channel matrix and N is an nR×2 noise
matrix. All elements of the two matrices are assumed to
be independently and identically distributed (i.i.d.) random
variables with zero mean, unit variance, N(0,1), for the
former and zero mean, σ2 variance, N(0, σ2), for the latter.

III. SC CODEWORD DESIGN

Based on the SC concept [9], a set of four SC codewords
for four transmit antennas is proposed as follows

S1 =


1 0
0 1
0 0
0 0

 ; S2 =


0 0
0 0

e jθ 0
0 e−jθ

 ;

S3 =


0 0

e j2θ 0
0 e−j2θ

0 0

 ; S4 =


e j3θ 0

0 0
0 0
0 e−j3θ

 .
(3)

To keep the main benefits of the Golden Code, the optimal
angle θ is exhaustively searched based on the non-vanishing
determinant criterion [10] to find the maximum coding gain
distance (CDG) as follows:

δmin = min
C,C′

det (C − C′)H (C − C′) , (4)

θo = arg max
θ

δmin (θ) . (5)
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Figure 1. Block diagram of the GC-SM scheme.

TABLE I
OPTIMAL VALUES FOR θ AND THE CDG FOR DIFFERENT MODULATION

TECHNIQUES

Modulation BPSK 4QAM 8QAM 16QAM

θ 0.72 1.26 0.46 0.26

δmin 0.58 0.398 0.11 0.033

The obtained angle and CDG results are summarized in
Table I for different modulation techniques.

Since the number of SC codewords, c, is four, the
achievable GC-SM spectral efficiency is given by

CGC−SM =
1
2

log2c + 2log2M (bpcu) , (6)

where M is the modulation order. Compared with the
STBC-SM spectral efficiency 1

2 log2c + log2M (bpcu), the
GC-SM spectral efficiency is twice higher than that of the
STBC-SM with the same antenna configuration. Further-
more, the GC-SM has the same spectral efficiency with the
DSTTD-SM while the GC-SM only utilizes two RF chains.

IV. GC-SM SIGNAL DETECTION

1. Signal Detection

For a given matrix Sk, k = 1,2, ...,K , we are able to
construct an equivalent nR×2 matrix H̃k = HSk . Therefore,
the system equation in (2) can be re-written as

Y = H̃kX + N. (7)

Arranging the X matrix structure into a column vector,
we have

^x =
1
√

5


(1 + jσ (θ)) x1 + (θ − j) x2
(1 − θ) x3 + (1 + jσ (θ)) x4
(1 + jσ (θ)) x3 + (θ − j) x4
(1 + jθ) x1 + (σ (θ) − j) x2

 . (8)

After manipulating the ^x vector in a real-valued form, this
vector is given as

^x = Gz, (9)

where z =
[
<(x1) = (x1) · · · = (x4)

]T
, and the

generator matrix G is given as

G =
1
√

5



1 −σ (θ) θ 1 0 0 0 0
σ (θ) 1 −1 θ 0 0 0 0

0 0 0 0 −θ −1 1 −σ (θ)
0 0 0 0 1 −θ σ (θ) 1
0 0 0 0 1 −σ (θ) θ 1
0 0 0 0 σ (θ) 1 −1 θ

1 −θ σ (θ) 1 0 0 0 0
θ 1 −1 σ (θ) 0 0 0 0


.

(10)

Then, Equation (9) is rewritten as

v = H̄kGz + w =Mkz + w, (11)

where

H̄k =

[
U 02nR×4

02nR×4 U

]
,
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U =



<
(
h̃11

)
−=

(
h̃11

)
· · · −=

(
h̃12

)
=

(
h̃11

)
<

(
h̃11

)
· · · <

(
h̃12

)
...

...
. . .

...

<
(
h̃nR1

)
−=

(
h̃nR1

)
· · · −=

(
h̃nR2

)
=

(
h̃nR1

)
<

(
h̃nR1

)
· · · <

(
h̃nR2

)

,

v =
[
<(y11) = (y11) · · · =

(
ynR2

) ]T
, and w has the

same structure as v.

Equation (11) is now similar to the system equation of
a conventional spatial multiplexing scheme. Therefore, the
Sphere Decoders (SD) in [16, 17] can be used to detect z
for a given Sk as follows:

(ẑ)k = arg min
z∈ΩN

‖tk − Rkz‖2, (12)

where tk = QH
k

v, Mk = QkRk , and ΩN is the set of integers
corresponding to M-QAM constellation.

After that, the index k of the transmitted SC codeword
is determined as follows:

k̂ = arg min
k=1,..,K

‖tk − Rk(z)k ‖2 − tHk tk . (13)

Finally, the information bits are recovered from the de-
tected SC codeword and the detected signal vector

(
Ŝk, x̂k

)
at the GC-SM receiver.

2. Complexity Analysis

It is assumed that each real math operation such as
a real addition or a real multiplication is considered as
a floating point operation (flop). As a result, a complex
multiplication requires six flops while a complex addition
requires two flops. The GC-SM complexity is calculated
and compared with related SM-based MIMO schemes with
the same structure. All schemes apply suitable modulation
techniques to obtain the same spectral efficiency and use the
sphere decoder at their receivers. Furthermore, the channel
is assumed to remain unchanged within T symbol periods.

In the pre-processing state, the complexity of computing
H̃k in (7), Mk in (11), and QR decomposition of Mk in (12)
is given as

ρpre =
2
T
(1032nR + 4nRnT + 36)K + (64nR + 7)K . (14)

Therefore, the GC-SM complexity is calculated as

ρGC−SM =
ρpre + ρs

4m + 2
, (15)

where ρs is the average number of operations within SD
searching stage.

Figure 2 compares the detection complexity of the GC-
SM with the related SM schemes such as the STBC-SM [7],
the STBC-CSM [8], the SM-DC [18], and the ESM [6],
equipped with four transmit and four receive, i.e. (4,4),
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Figure 2. Complexity comparison between GC-SM, STBC-SM, STBC-
CSM, SM-DC, and ESM at the spectral efficiency of 5 bpcu, SNR
of 10 dB, with four transmit antennas, four receive antennas, and T = 60
symbol periods.

antennas at the spectral efficiency of 5 bpcu. Figure 2 shows
that the complexity of the GC-SM is higher than those of
the STBC-SM, the SM-DC, and the STBC-CSM, but lower
than that of the ESM. This is due to the fact that the Golden
Code structure in the GC-SM is more complex than that
of the Alamouti STBC in the STBC-SM and the STBC-
CSM. The ESM has the highest complexity because it needs
to use the maximum likelihood detector to estimate the
transmitted symbols using multiple signal constellations.
However, as will be shown in Section V, the proposed GC-
SM outperforms all others in terms of BER performance.

3. Theoretical Upper Bound for the BEP of the
GC-SM

The bit error probability (BEP) of the GC-SM can be
derived from the pairwise error probability (PEP) P(Ci →

Cj) that the transmitted codeword matrix Ci is mistakenly
decoded for matrix Cj [19] as follows:

Pb ≤
1
N

N∑
i=1

N∑
j=1

P(Ci → Cj)wi, j

log2N
, (16)

where N = K M4 and wi, j is the number of erroneous bits
between the matrices Ci and Cj .

The conditional PEP of the GC-SM system is calcu-
lated as

P
(
Ci → Cj |H

)
= Q

(√
γ

2
d2 (

Ci,Cj

) )
, (17)

where Q (x) = (1/2π)
∞∫
x

e−y
2/2dy.
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From [20], the PEP is given as

P(Ci → Cj) =
1
π

π
2∫

0

©« 1
1 + γλi , j ,1

4sin2φ

ª®¬
nR©« 1

1 + γλi , j ,2
4sin2φ

ª®¬
nR

dφ,

(18)

where λi, j ,1 and λi, j ,2 are the eigenvalues of the distance
matrix

(
Ci − Cj

) (
Ci − Cj

)H .

Converting the (18), we have

P(Ci → Cj) =
1
π

π
2∫

0

(
sin2φ

sin2φ+
γλi , j ,1

4

)nR
(

sin2φ

sin2φ+
γλi , j ,2

4

)nR

dφ

= 1
π

π
2∫

0

(
sin2φ

sin2φ+c1

)m (
sin2φ

sin2φ+c2

)m
dφ,

(19)

where c1 =
γλi , j ,1

4 , c2 =
γλi , j ,2

4 , and nR = m.

From [20], the closed form of the (19) is presented by

P(Ci → Cj) =
(c1/c2)

m−1

2(1 − c1/c2)2m−1

[
m−1∑
k=0

(
c2
c1
− 1

)k
Bk Ik (c2)

−
c1
c2

m−1∑
k=0

(
1 −

c1
c2

)k
Ck Ik (c1)

]
(20)

where

Bk
∆
=

Ak(2m−1
k

) ,
Ck

∆
=

m−1∑
n=0

(k
n

)(2m−1
n

) An,

Ak
∆
= (−1)m−1+k

(m−1
k

)
(m − 1)!

m∏
n=1
n,k+1

(2m − n),

and

Ik (c) = 1 −
√

c
c + 1

[
1 +

k∑
n=1

(2n − 1)!!
n!2n(1 + c)n

]
,

where the double factorial notation denotes the product of
only odd integers from 1 to 2k − 1.

V. SIMULATION RESULTS

In this section, the GC-SM performance is evaluated
and compared with several related SM systems such as
the ESM, the STBC-SM, the SM-DC, and the STBC-
CSM using different modulation techniques. The number
of transmit antennas, receive antennas, and active antennas
in each scheme are represented respectively by (nT ,nR,nA).
Furthermore, it is assumed that all schemes employ the
sphere detector at the receiver while the ESM uses the
ML detector.
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Figure 3. Performance comparison between GC-SM, STBC-SM, SM-DC,
ESM, and STBC-CSM with (4,4) antennas and the spectral efficiency of
5 bpcu.
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Figure 4. Performance comparison between GC-SM, STBC-SM, SM-DC,
and STBC-CSM with (4,4) antennas and the spectral efficiency of 7 bpcu.

In Figure 3, the GC-SM performance is compared with
that of the ESM, the SM-DC, the STBC-SM, and the
STBC-CSM at the spectral efficiency of 5 bpcu. The GC-
SM was shown to outperform the related schemes at the
high SNR region. Particularly, at BER = 10−3, the GC-
SM yielded SNR gains of 0.9 dB, 2 dB, 2.1 dB, and
2.7 dB over the STBC-CSM, the STBC-SM, the SM-DC,
and the ESM, respectively. However, the achievable spectral
efficiency of the ESM was 6 bpcu compared with 5 bpcu of
the GC-SM with the same antenna configuration and same
signal modulation. In Figure 4, the GC-SM performance
is compared with that of the STBC-SM, the SM-DC, and
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the STBC-CSM at the spectral efficiency of 7 bpcu. The
GC-SM was shown to outperform the related schemes at
the high SNR region. Particularly, at BER = 10−3, the GC-
SM yielded SNR gains of 1.5 dB, 1.6 dB, and 3 dB
over the STBC-CSM, the SM-DC, and the STBC-SM,
respectively. Therefore, compared with these schemes, the
GC-SM scheme can save transmit power. It shows in
Figure 3 and 4 that the theoretical results coincide with
the simulation results at the high SNR region.

1. The GC-SM under Spatial Correlation Effect

In order to show the effectiveness of the proposed GC-
SM, we evaluated its performance under a more realis-
tic spatially correlated channel. From [21], the modified
MIMO channel matrix under the spatial correlation effect
at both transmitter and receiver is given by

H̄ = R1/2
R HR1/2

T , (21)

where RT and RR are an (nT × nT ) transmit spatial corre-
lation matrix and an (nR × nR) receive spatial correlation
matrix, respectively. Each element of these matrices is
derived from the exponential correlation matrix model [22]:
ri j = r∗ji for i < j or r = r j−i for i ≥ j where r is
the correlation coefficient of the neighboring transmit and
receive antennas.

Figure 5 illustrates performances of the GC-SM, the
STBC-SM, the ESM, the SM-DC, and the STBC-CSM,
equipped with four transmit and four receive antennas at
a suitable spectral efficiency of 5 bpcu and the medium
correlation factor r = 0.5. The performance of the GC-SM
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Figure 5. Performance comparison between the GC-SM, the STBC-
SM, the SM-DC, the ESM, and the STBC-CSM with (4,4) antennas, the
spectral efficiency of 5 bpcu, and r=0.5.

was slightly affected by the spatial correlation, however, it
was still more robust than the others, especially at the high
SNR region. At BER = 10−3, the GC-SM offered about
0.2 dB, 0.3 dB, 1.8 dB, and 6 dB SNR gains over the
STBC-CSM, the SM-DC, the STBC-SM, and the ESM,
respectively. At SNR < 10 dB, the STBC-CSM achieves
the best performance. It can be explained that the transmit
STBC-CSM matrices, which maximize the coding gains,
are optimally chosen from a set of STBC-CSM matrices.
The ESM has the worst performance. This result can
be explained that as the Euclidean distances between the
antenna indices under the correlation effect get smaller, the
BER of this scheme increases.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed a new SM-based MIMO
system with four transmit antennas, called GC-SM, by em-
bedding the Golden Code in the SM. The GC-SM achieves
higher spectral efficiency than that of the STBC-SM and
the STBC-CSM with the same antenna configuration. The
proposed GC-SM was shown to outperform several related
SM schemes at the same spectral efficiency with suitable
cost of detection complexity. Besides, the GC-SM PEP
union bound is derived to verify the simulation results.
Furthermore, the GC-SM is shown to be robust under
spatially correlated fading channels.

From results presented in the paper, as the proposed
scheme works for MIMO scenario equipped with four trans-
mit and four receive antennas, in the near future we will
focus on designing a general procedure for SC codewords
operating with an arbitrary number of transmit antennas.
We also look for efficient low-complexity detection al-
gorithms for MIMO-SM schemes. Besides, the bit error
probability upper bound of MIMO-SM schemes will be in-
vestigated at the low SNR region.
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