
Research and Development on Information and Communication Technology

Matchmaking for Multi-Cloud Marketplace
Application
Huynh Hoang Long1, Nguyen Huu Duc1, Le Trong Vinh2

1 Hanoi University of Science and Technology, Hanoi, Vietnam
2 University of Science, Vietnam National University, Hanoi, Vietnam
Correspondence: Nguyen Huu Duc, ducnh@soict.hust.edu.vn
Communication: received 19/05/2019, revised 07/07/2019, accepted 14/07/2019
Online early access: 14/07/2019, Digital Object Identifier: 10.32913/mic-ict-research.v2019.n1.854
The Area Editor coordinating the review of this article and deciding to accept it was Prof. Le Hoang Son

Abstract: Software as a Service has been developing accord-
ing to the trend that leverages the advantage of multi-cloud
environment to avoid vendor lock-in problem. To consume
cloud resource provided by various providers, cloud software
should be decomposed into components which can be deployed
across different clouds. Ideally, components of a component-
based cloud software are independently developed and offered
through multi-cloud marketplace. To bring the highest benefit
to consumers, there should be an efficient cost strategy for
finding a group of compatible cloud platforms for their cloud
softwares. In this paper, after redefining and developing simple
formal definition for Composable Application Model (CAM),
we present a matchmaking method that could be useful for
verifying the correctness of software composition as well as
for checking the correct deployment of a software composition
on specified cloud platforms. As an illustration, we experi-
mentally transform the cloud application model achieved by
our matchmaking method into TOSCA-based specification
template, which is known as a standard representation for
multi-cloud applications.

Keywords: Cloud computing, multi-cloud, multi-cloud mar-
ketplace, composable application model (CAM), software as a
service, matchmaking.

I. INTRODUCTION

In recent years, the Software as a Service delivery model
(SaaS) is increasingly used and it has become a reasonable
choice to consumers [1]. A simple way for a consumer to
find a suitable SaaS for his needs is through a cloud mar-
ketplace where cloud softwares are developed and provided
by vendors themselves and/or individual developers.

Usually, a cloud provider publishes a set of application
programming interfaces (APIs) and tools to developers
for implementing applications on the top of their cloud
resources. Thus, cloud applications are often tightly coupled
to the cloud services at different levels and restrictions.

Developers are totally bound to the ecosystem of technol-
ogy from the cloud provider where they want to host their
on-developing application. As a result, the vendor lock-in
problem arises, SaaS development is single, isolated and
discursive in narrow ranges. There are some limitations
of that approach which are identified as follows: (i) the
lack of integration mechanisms among cloud providers
making the development of a cloud application whose
components are designated to be hosted on different cloud
infrastructures become infeasible; (ii) the capability limit
of cloud providers preventing the development of large-
scale software system which requires a tremendous amount
of resources; (iii) lack of standards supporting a uniform
development of cloud applications.

To overcome these limitations, cloud application is de-
signed in a fashion that they consume various types of
resource offered by cloud providers. A good idea is that
a cloud application in a multi-cloud environment should be
decomposed into different components which can be devel-
oped and distributed across heterogeneous cloud platforms,
it was mentioned in some papers such as Guillén et al. [2]
and Baryannis et al. [3]. This view becomes clearer through
Copil et al. [4] proposed a generic composition model
of cloud service to represent the entire cloud application
or system which can be further decomposed into service
topologies and service units. Service units represent individ-
ual software or cloud offering services, and can be grouped
into a cloud service topology for establishing semantically
connections. Also from this point of view and combine with
the component-based approach presented in [5–8], in our
previous studies [9] and [10], we proposed a component-
based cloud application model in which the cloud software
of multi-cloud marketplace is composed from software
components, each of them can be independently developed
by different developers and can reside in different clouds.

31

Research and Development on Information and Communication Technology

Developers could be free to develop cloud software
components as they wish without being dependent on any
cloud API of a certain cloud provider, and cloud software
development could be not tightly coupled to any cloud
provider. This brings some benefits as follows: (i) this
enables the distribution of software components on hetero-
geneous multi-cloud platforms; (ii) this separates the cloud
software development from cloud providers and so mini-
mizes vendor lock-in problem; (iii) this helps consumers
exploit the most advanced features from a cloud provider
by only choosing its best platform services to host some
appropriate components instead of a full SaaS solution; (iv)
developers do not need to pay too much attention to cloud
infrastructure information runtime parameters such as CPU,
RAM, Storage, middleware, network, etc.

In this approach, cloud software development is sep-
arated from cloud providers. Thus, we need an efficient
way to make sure that a cloud software and its underlying
execution platform are compatible. There are some studies
related to this issue. Guillén et al. [2] presented a cloud
development framework for developing managing cloud
application that is separated from the source code and
managed, source code of application could be deployed
on multiple cloud platforms. The framework is intended
to be applied upon applications targeted towards IaaS
and PaaS clouds. Baryannis et al. [3] presented a cloud
service composition approach for multi-cloud applications
so that would be able to find the most optimal resource
by different cloud providers for satisfying all end-user
requirements. Kolb [11] introduced an approach for match-
ing web application among PaaS providers based on their
profiles. The matchmaking is successful if and only if all
web application properties exactly match with a compared
PaaS profile. Zeng et al. [12] proposed a Wordnet-based
matching algorithm that considers the semantic similarity
of the concepts mapping to the I/O parameters of the
services. QoS information is utilized to rank the search.
Zilci [13] introduced an idea to compare services based on
their quality of service (QoS) requirements in cloud service
marketplaces by using constraint programming to solve the
service matchmaking problem.

Garg et al. [14] proposed a framework and a mech-
anism for ranking Cloud services based on their per-
formance on QoS properties and the weights given to
these properties, by exploiting an Analytical Hierarchy
Process (AHP)-based algorithm. The matchmaking solution
of Cloud4SOA proposed by D’Andria et al. [15], allows
searching among the existing PaaS offerings those that
best match the user requirements and ranks them based on
the number of satisfied user preferences. The matchmaking
mechanism uses semantic technologies to align the user

requirements and the compatible PaaS offerings. Garcı́a-
Gómez et al. [16] introduced an ideal for matchmaking
via the use of blueprints. A set of alternative Abstract
Resolved Blueprints (ARBs) are created in design process
of software developer based on the offerings of other avail-
able third-party source blueprints that can be queried and
purchased from the marketplace. Each ARB is a possible
combination of blueprints constituting a Cloud application.
Elshareef [17] propose a matchmaking strategy between
the incoming requests and various resources in the cloud
environment to satisfy the requirements of users and to load
balance the workload on resources.

An interesting approach of incorporating Domain Spe-
cific Languages (DSL) which facilitate to model cloud
application and support between matchmaking deployment
requirements and infrastructure descriptions were presented
by Sledziewski et al. [18] and Brandtzaeg et al. [19].
Baryannis [3] introduced an ideal to matchmaking applica-
tion with cloud infrastructure. Constraint satisfaction rules
are employed in order to match requirements with existing
infrastructure descriptions/capabilities, resulting in one or
more proposed plans for deployment. The matchmaking
process is conducted through the matchmaker engine of
which inputs are requirement specifications provided from
application developer, cloud infrastructure descriptions are
derived from knowledge base, and constraint satisfaction
rules are derived from a rule base. In addition, there are
some open source solutions such as Heat [20] and Juju [21]
which describes and model composite cloud applications
and support deploying them on several cloud providers.
However, these proposals could only be done on a single
cloud. An effort for distributing cloud application on many
clouds is showed in a recent study which was presented by
Saatkamp [22], he introduced the Split and Match Method
for TOSCA specification. His method splits TOSCA topol-
ogy according to the specified targets providers and matches
the resulting topology fragments with the cloud provider
services to support an automated deployment of the ap-
plication to multiple clouds. The goal of the Split and
Match Method is to enable a customized distribution of the
components of an application to different cloud providers.

In general, these matching solutions have limitations as
follows: (i) the compatibility and the dependencies among
components in a multi-component cloud application is not
considered; (ii) these matching solutions have not been fully
defined in a specific multi-cloud application pattern; (iii) a
cloud software and its runtime systems were not described
in a standard specification model so that cloud software
components can be distributed across various clouds.

In this paper, we present a novel matchmaking method
for cloud application of multi-cloud marketplace as the

32

Vol. 2019, No. 1, September

next step of our previous works in [9] and [10]. Our
contributions are summarized as follows:

• We improve Composable Application Model (CAM)
proposed in [9] that organizes multi-component cloud
software in a nested structure. Then, we define a
simple formal definition for abstract model of CAM.

• We propose an approach to explicitly specify the
technological constraints among software components
and between a component and its expected underlying
runtime platforms by matching rules. We use these
constraints to verify the correctness of software com-
position and deployment.

• We develop a matchmaking algorithm to retrieve a
group of compatible cloud platforms for a component-
based cloud software that suits with a criteria set
ordered by cloud consumer.

Multi-cloud marketplace also plays a role of a service
broker. Therefore, our matchmaking method aims to create
an effective broker mechanism that support consumers to
find suitable cloud platforms that satisfy their demands
for each cloud software that independently developed by
developers and released through multi-cloud marketplace.
The output of this work is a group of compatible cloud
platforms for a component-based cloud software; on this
basis, a multi-cloud application defined by CAM is made
up. Relying on a case study a case study presented in
Section IV, we validate our proposal by experimenting a
transformation from a specification of CAM into TOSCA-
based specification template which is used for representing
multi-cloud application structure.

The rest of the paper is organized as follows. Section II
introduces our work for improving Composable Application
Model. Matchmaking algorithm is presented in Section III.
The illustration of transformation from CAM specification
to TOSCA application template is shown in Section IV.
Finally, we conclude and summarize the contributions of
the paper in Section V.

II. COMPOSABLE APPLICATION MODEL

In our approach, the development of cloud software
should not be bound to any specific cloud provider. A
cloud software should be able to deploy on compatible
cloud platforms to form a cloud application system without
having to re-engineer or to re-develop. Thus, we divide a
cloud application into two separated parts: a cloud soft-
ware and an underlying runtime system which is provided
by specific cloud providers. We also adopt the concept
of component-based application model in which a cloud
software is decomposed into software components, each
of them can be hosted on separated cloud platforms. This

Cloud Software

Cloud Platform

Host on Host on Host on Host on

Host on

Relationship

... ...
Software

Component
02

Software
Component

01

Platform
Component

01

Platform
Component

n

Platform
Component

n+1

Software
Component

n-1

Software
Component

n

Software
Component

n+1

Figure 1. Cloud Application.

component-based approach requires the dependency among
software components to be explicitly clarified for the sake
of separate development and testing of the components. We
call this cloud application model is Composable Application
Model (CAM) and are going to redefine the model in
following sub-sections.

1. General Concepts

Before going to further details of CAM, we need to
clarify several related concepts as follows:

1) Cloud application: A cloud application is a runtime
service that offers specific business functionalities. To cus-
tomers, this refers to a similar concept to Software as
a Service (SaaS). Internally, a cloud application may be
constructed as a distributed system whose elements are
compute servers running specific softwares and located at
specific cloud providers.

We divide a cloud application into two separated parts:
a cloud software and an underlying runtime system (which
is a single or a group of cloud platforms) as illustrated in
Figure 1. This separation allows us avoiding vendor lock-
in problem. The software part can be developed separately
from the underlying cloud platforms. All dependencies
between the cloud software and the cloud platforms should
be explicitly described as they will be used to check the
compatibility at the time of deployment. Depends on the
number of cloud platforms are used, we classify cloud
applications into two categories:

• Single-platform application: A single platform appli-
cation is a cloud application operating on a single
cloud platform.

• Multi-platform application: a multi-platform appli-
cation is a cloud application operating on a group
of cloud platforms which may be distributed among
different cloud providers.

33

Research and Development on Information and Communication Technology

Cloud Provider
A

User Authentication
& Administrator

Seft Service &
User Management

Analytics
& Reporting

ConfigurationDescription

Seft Service & User Provisioning

O-Marketplace Electronic Commerce Platform

O-Marketplace Runtime Platform

O-Marketplace Repository

Cloud softwares Cloud platform services

Cloud App
Vendors

Cloud App
Vendors

Support

Migration MonitoringDeployment

Catalogue
Management

BillingIntergration

Cloud Provider
B

Cloud Provider
C

Cloud Providers

O-Marketplace
GUI

Consumers

Software
components

IaaS
services

PaaS
services

Java Web App IaaS 01 PaaS 01

MySQL IaaS 02 PaaS 02

MySQL Cluster

WordPress App

PHP-Apache

Drupal App

...

Tomcat IaaS 03 PaaS 03

Wordpress Server

...

Software
composition

Developer Connection Framework

Cloud Software
Testing

Cloud Software
Modelling

Cloud Software
Discovery

Figure 2. O-marketplace.

2) Cloud software: A cloud software is a collection of
artifacts (i.e., code and data) grouped as a software bundle
in a standard format. There are several types of cloud soft-
ware. In the simplest form, cloud software is just a single
component which can resides in a single cloud platform.
In more complex situations, a cloud software is a com-
position of software components that could be distributed
across many cloud platforms. With this component-based
approach, developers can build up an application by just
incorporating existing components into their own software
solution. This would help us to increase re-usability of the
software components and reduces unnecessary efforts in the
software development process.

Cloud Software Component, or component for short, is
a basic element of CAM. Components are used to build
up more complex cloud softwares. Beside the content of
code and data, the definition of a component should specify
necessary conditions for the component to be integrated

with others and to be deployed on a specific platform and/or
a platform group. A component may be an atomic entity
or a combination of other components. We classify cloud
software components into three following types:

• Simple component type stands for a set of atomic
entities, the building blocks for cloud softwares. A
simple component packs its code and data together
with the necessary requirements for running properly.
It also explicitly defines the capabilities which other
components may need when combining to form a
cloud software.

• Cloud Software Stack, or stack for short, is a special
kind of multi-component cloud composition. It defines
a sequence of cloud software components in which a
component consumes the software services provided
by the following components in the sequence, and in
the same time it sets up necessary environment for the
previous components in the sequence. Dependencies

34

Vol. 2019, No. 1, September

among layers of components should be satisfied when
developing a software stack. A stack can only be
deployed on a single platform.

• Cloud Software Composition, or composition for short,
is a more generic multi-component cloud composition.
Different from cloud software stack, which can only
be deployed on a single platform, a cloud software
composition can host its components on multiple
platforms (may be from different cloud providers).
Dependencies among software components should be
satisfied according to the composition specification.

3) Cloud platform: Cloud platform is a kind of runtime
system provided by cloud providers for hosting cloud soft-
ware components. We also refer the term cloud platform as
a model of delivery IaaS (Infrastructure as a Service) and/or
PaaS (Platform as a Service). Various cloud providers can
develop and provide the same kind of cloud platform
service, but with different price, QoS, resource capacity,
policies, etc. In this paper, we only consider the technical
capabilities of cloud platforms for matching them with the
proposed software model.

4) Cloud marketplace: Cloud marketplace is known as a
kind of marketplace for selling or leasing cloud softwares
which can be able to deploy on and to deliver from exist-
ing cloud providers. Most current cloud marketplaces are
operated by a single cloud provider. They normally provide
a complete application solution and/or a set of proprietary
tools and APIs for developers to develop softwares on the
top of their cloud environment. That obviously leads to the
vendor lock-in problem.

To avoid this problem, in [10], we proposed a model of
multi-cloud marketplace, which was called O-Marketplace
(Figure 2). O-Marketplace targets to an open environment
for developers who do not own cloud infrastructure, espe-
cially to startups whose resources are limited but their cre-
ativity is very plentiful. Developers are free to evolve their
cloud software without any technology restriction from
cloud providers. In this model, cloud software components
are developed by individual developers, are published and
sold on the marketplace, and can be able to deploy on
compatible cloud platforms suggested by the marketplace.

To facilitate the suggestion feature of the marketplace, we
develop a matchmaking algorithm. This algorithm would
help us to find suitable platforms to host a specific cloud
software by matching the platform requirements of the
cloud software to the capabilities of the cloud platforms
registered in their profiles. More details of the algorithm
will be given in the Section III.

2. Matching Definition

In CAM, a cloud software is composed from independent
software components in a composition, a software compo-
nent is deployed on a platform component which is a cloud
resource service bundle such as IaaS or PaaS offered from
different cloud providers. To depict the relationships of
components within a cloud application modeled by CAM,
we specify two types of dependencies in a cloud applica-
tion model: software dependence and platform dependence.
Software dependence denotes the interconnection between
two software components. The platform dependence denote
deployment capability of a pair of software components or
a pair of a software component and a cloud platform. We
define two elements to make up a dependence: Requirement
and Capability. Relying on these elements, matching rules
is constructed to denote the dependencies within a cloud
application. Requirement specification, capability specifi-
cation, and matching condition is defined as follows:

• Requirement specification: requirement denotes the
dependency of a component on other another compo-
nent. It poses the necessary conditions for component
to perform its functionality and behaviors. Requested
interfaces and properties of a component are encapsu-
lated in requirement. We specify two types of require-
ment: software requirement and platform requirement.
Software requirement (sreq) is a constraint on the func-
tionality and behavior of another component. Platform
requirement (preq) is a constraint on the environment
and technology of another component.

• Capability specification: capability denotes the avail-
able capacity that can meet the request from outside.
its functionality and behavior are performed when it
satisfies the condition from another external compo-
nent. Responded interfaces and properties of a com-
ponent are encapsulated in capability. We specify two
types of capability: software capability and platform
capability. Software capability (scap) is a supply of the
functionality and behavior of a component. Platform
capability (pcap) is a supply of the environment and
technology of a component.

• Matching condition: we define a dependence between
two components is valid if requirement of a component
fully match with capability of the other.

3. An Abstract Model of CAM

Our ultimate goal is to develop a full specification for the
proposed composable cloud application. This development
requires a great effort on various aspects including: (1)
defining standards and frameworks for coding cloud soft-
ware components; (2) specifying the deployment and man-
agement operations of composable cloud application; (3)

35

Research and Development on Information and Communication Technology

Base Component

Stack

is-ais-a is-a

*
components

1

base

Simple Component Component
top

Figure 3. Overall structure of CAM.

verifying the correctness of cloud software composition; (4)
matching composable cloud software to existing cloud
platforms. In this paper, we limit our study to the latter two
problems. We develop an abstract model of CAM in which
we ignore the implementation details of the components
but focus on the relationship among components inside
a software composition and the relationship between a
component and its underlying platforms.

1) Overall structure: We define the abstract model of
CAM as a nested structure where each component may
be a composition of other components. Some of them may
again be compositions of other smaller components. This
approach helps increase the degree of re-usability since the
implementation of a complex component may be reused in
other compositions. This also motivates the cloud software
marketplace where developers can develop and sell their
small components instead of complete software solutions.

According to the concepts presented in section II-C, we
classify components in the model into the following three
types: (1) Simple Component, (2) Stack, and (3) Composi-
tion. Figure 3 shows the overall structure of CAM and the
relationship among these three types of the components.
Details for each type of component will be explained in
the following sections.

2) Base component: As shown in Figure 3, three types of
software components are modeled as sub-types of the Base
Component. This formalism allows us to treat components
of different types uniformly as specializations of the Base
Component. Each component has its own properties. We
use the dot-notation to refer to a property of a component.
For example, X .y refers to the property y of the component
X . Since we focus on the relationship among components
inside a composition and the relationship between a com-
ponent and its underlying platforms, the properties of a
component should explicitly describe its requirements and
capabilities. More specifically, as shown in Figure 4, a
component should have at least the following properties: (1)
description of software services provided by the component
(software capabilities - scaps), (2) the establishment of
runtime environment providing to upper components in a

sreqs

pcaps

scaps

preqs[0] preqs[d-1]
...

Base Component

Figure 4. Base component.

stack manner (platform capabilities - pcaps), (3) descrip-
tions of extra software services required for running the
component properly (software requirements - sreqs), (4)
and the necessary requirements for underlying platforms to
host the component (platform requirements - preqs). The
specifications of components, i.e,. the description of com-
ponent’s properties, are used for verifying the correctness
of software composition and for checking the compatibility
between a component and its underlying platforms. These
specifications are written by developers, and they are not
necessary to collate the actual implementation of the com-
ponents. Instead, developers can select the requirements and
capabilities of a component from a predefined set of terms.

Note that a component may be hosted on multiple cloud
platforms from different cloud providers. The platform
requirements should be specified for each platform. We call
degree of a component to be the total number of underlying
platforms for hosting the component. Thus, the platform
requirements for the platform i is defined as preqs[i].

For a convenient development, we also use the following
derived properties:

• preqs: set of all platform requirements,

preqs =
⋃

i∈[0...d−1]
preqs[i].

• reqs: set of all software requirements and platform
requirement,

reqs = preqs
⋃

sreqs.

• caps: set of all software requirements and platform
requirement,

caps = pcaps
⋃

scaps.

3) Simple Component: Simple component is an atomic
type of components in CAM. In a full definition, a simple
component should specify its code and data as well as
the necessary specification of requirements and capabilities.
A simple component is hosted on a single platform, i.e.,
(degree = 1). If the set of requirements of a simple

36

Vol. 2019, No. 1, September

pcaps

scaps
run on top of

preqs

sreqs

Simple Component
(top)

Stack
(base)

Figure 5. Cloud software stack.

component is empty (regs = ∅), the component can repre-
sent a complete cloud software. In general cases, a simple
component can combine with other components to form a
more complex component (i.e., a stack or a composition).

4) Stack: A cloud software stack, or stack for short,
denotes a sequence of simple components deployed on top
of each other vertically. For simplicity, we define a Stack
in nested manner. Each stack has two elements: (1) top
element is a simple component lay on top of the stack, (2)
and base which is either a simple component or another
stack representing the remain components in the sequence.
Similar simple component, a software stack can only be
deployed on a single platform (degree = 1). Beside the
advantage of re-usability, the combination of multiple com-
ponents into a single form of stack would help us reducing
the cost of deployment and management by combining
corresponding operations from the stack’s elements. We
will discuss this interesting problem in another study from
our on-going research.

When creating a stack, a developer must specify the top
element and the base element (Figure 5). The developer
must also specify the stack requirements and capabilities
(i.e., sreqs, preqs, scaps, and pcaps), like those mentioned
in the Base Component. A correct combination of a stack
S should satisfy the following validation rules:

S.top.preqs ⊆ S.base.pcaps

S.pcaps ⊆ S.top.pcaps
⋃

S.base.pcaps

S.preqs ⊇ S.base.preqs

S.sreqs ⊇ S.top.sreqs
⋃

S.base.sreqs

S.scaps ⊆ S.top.scaps
⋃

S.base.scaps

connect to sreqs

preqs[0] preqs[d-1]
...

scaps
Simple Component

(first)
Simple Component

(second)

Figure 6. Cloud software composition.

5) Composition: Cloud software composition, or compo-
sition for short, denotes a set of software components
combined in a single form of component to hide the
complexity of its own inter-dependency. A software com-
position is considered as a directed graph whose vertex
are either a simple component or a stack. An edge from a
component A to a component B in a composition specifies
that the component A consumes services provided by the
component B at runtime.

Similar with stack, we apply the nested structure for
defining compositions. Each composition consists of a set
of components and some of them may be other compo-
sitions. For simplicity, we define a composition with two
elements (Figure 6): the f irst, and the second. The inter-
dependence of a composition is restricted to the software
dependence of the f irst to the second. Degree of the
composition is calculated by the sum of degrees of the f irst
and the second. When creating a composition, developers
need to specify its external requirements and capabilities.
At the moment, we do not allow extra components to lay
on top of a composition. So, the property pcaps should be
empty. The following validation rules should be applied for
verifying the correctness of a composition C:

C.scaps ⊆ C. f irst.scaps
⋃

C.second.scaps

C.sreqs ⊇ C.second.sreqs
⋃

(C. f irst .sreqs\C.second.scaps)

C.preqs[i] ⊇ C. f irst.preqs[i]

∀i ∈ [0 . . . (C. f irst.degree − 1)]
C.preqs[i] ⊇ C.second.pregs[i − d1]

∀i ∈ [d1 . . . (d1 + d2 − 1)]
d1 = C. f irst .degree

d2 = C.second.degree

6) Cloud platform: Cloud platform, or platform for short,
is used for modeling the cloud platform profile in a cloud
marketplace. A specification of a single platform P should
describe its capabilities (pcaps) in order to match with
the platform requirements (preqs) of cloud software com-
ponents which are aimed to deploy on it. Practically, the
specification of a platform is provided by the cloud provider

37

Research and Development on Information and Communication Technology

or a service broker such as cloud marketplace. In this
case, developers and cloud providers should agree on the
same set of predefined terms of the platform requirements
and capabilities.

A cloud software composition may require more than
one platform. We define platform group as an order set
of cloud platforms, and compatible platform group as a
platform group that satisfies the platform requirements
of a composition. The following predicates are used for
checking this property.

• compatibleWithReqs(P, preqs) if P.pcaps ⊇ preqs
• compatibleWith(PG = [P0,Pd−1],C)

if d = C.degree and
∀i ∈ [0 . . . d−1].compatibleWithReqs(Pi,C.preqs[i])

At the time of software deployment, platform compatibil-
ity should be checked to ensure that the software component
will work fine on the underlying platform. The platform
compatibility check is also a basis for the matchmaking
algorithm presented in the next section.

III. MATCHMAKING METHOD FOR CLOUD
APPLICATION

In multi-cloud marketplace, besides providing a place
for publishing and selling cloud softwares, the marketplace
may also play a role of a service broker. Based on the
specification of platform requirements of cloud software
component, the marketplace would be able to suggest
optimal solutions for renting compatible cloud platforms.
The term “optimal” could be defined according to the user
needs. Some user wants to find a platform solution with
smallest price. Others may need a solution with the best
quality of service. In the context of this paper, we do not
dig deeper in this aspect.

We assume that a platform solution for hosting a cloud
software component C is a compatible platform group
PG to the component C, i.e. compatibleWith(PG,C) is
satisfied. There may be more than one solution existed
since several cloud providers may offer a same kind of
platform (but with different price and quality of service).
Choosing an optimal solution means that we need to make
a comparison among the solutions based on a designated
cost function. We call Cost(PG) for the cost function of
a platform solution, i.e., the platform group PG. Some
reasonable examples for the cost function would be:

• Cost([P0, . . . ,Pd−1]) =
∑d−1

i=0 Price(Pi). This cost
function helps customers select a platform solution
with optimal price.

• Cost([P0, . . . ,Pd−1]) = |{P0, . . . ,Pd−1}|. This cost
function helps customers select a platform solution
with a smallest number of platforms will be used.

Algorithm 1: Matchmaking(C, PS)
1 Inputs:
2 - A cloud software component C.
3 - A set of cloud platforms PS.
4 Output:
5 - A compatible platform group PG to the component
6 C whose members are selected from PS.
7 begin
8 d = C.degree ;
9 for i = 1 to d − 1 do

10 CPL[i] = ∅;
11 foreach P in PS do
12 if compatibleWithReqs(P,C.preqs[i]) then
13 CPL[i] = CPL[i] ∪ {P};
14 end
15 end
16 end
17 min cost = INFINITY;
18 best solution = NULL;
19 Let S = (CPL[0] × CPL[1] × . . . × CPL[d − 1]);
20 foreach PG in S do
21 if Cost(PG) < min cost then
22 min cost = Cost(PG);
23 best solution = PG;
24 end
25 end
26 return best solution;
27 end

Using such a cost function, we develop a matchmaking
algorithm for suggesting compatible platform solution as
presented in Algorithm 1.

The first part of the algorithm (lines 8-16) calculates a list
of compatible cloud platforms CPL[i] for each set platform
requirements preqs[i] of the component C. In the second
part (lines 17-25), the algorithm select the best platform
solution among all possible solutions, the Cartesian product
S = CPL[0] × CPL[1] × · · · × CPL[d − 1].

Correctness: Correctness of the algorithm is obvious
since the optimal solution best solution is selected from a
set of all compatible platform groups to the component C,
i.e., S = CPL[0] × CPL[1] × · · · × CPL[d − 1].

Performance analysis: Let n be the number of cloud
platforms in PS. The first part of the algorithm (lines 8-16)
requires d×n compatibility checks. Thus the complexity of
this part is O(d×n). The second part of the algorithm (lines
17-25) requires nd calculation for the Cost function. As-
sume that O(f (n)) is the complexity of the Cost function.
The complexity of the second part would be O(nd× f (n)). In
summary, the complexity of the algorithm is O(nd × f (n)).

The algorithm is rather simple but flexible since we
always have chance to change the cost function according
to the consumer needs.

38

Vol. 2019, No. 1, September

Topology Template

Relationship
Template

Node
Template

type for

type for

Group
Template

Service Template

Node Types

Node Type

Relationship Type

In
te

rfa
c
e
s

In
te

rfa
c
e
s

P
ro

p
e
rt

ie
s

P
ro

p
e
rt

ie
s

Relationship Types

Plans

}

}

}

}

Figure 7. Structural elements of a service template and their relations.

IV. MAPPING TO TOSCA

In this section, we demonstrate the feasibility of our pro-
posed composable application model (CAM) by translating
a specification of CAM into TOSCA topology template, a
standard specification for creating multi-cloud application.

1. Topology and Orchestration Specification for Cloud
Application

Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) [23] is an open standard built by
OASIS that defines the inter-operable description of cloud
application hosted on the cloud; including its components,
relationships, dependencies, requirements, and capabilities.
TOSCA enables portability and automated management
across cloud providers which have different underlying
platform or infrastructure. Thus, the portable deployment
of cloud applications could be done on any compliant cloud
because the relationships among parts of the service and the
operational behaviours of these services are independently
described with any cloud provider.

TOSCA provides a meta model and packaging format
to realize the automated implementation, deployment, con-
figuration, management, and orchestration of cloud appli-
cations in an automated manner through a combination of
two core concepts: Topology Templates and Management
Plans (Figure 7). In order to support such packaging format.
Target clouds have to have runtime environments that
support TOSCA standard. Both IaaS and PaaS are feasible
with this approach.

TOSCA is a middle-level language for the specification
of the topology and orchestration of an IT service in the
form of a service template. It is very efficient in software

Wordpress App

PHP Container

Wordpress DB

Apache Server

Ubuntu VM
On Openstack

Ubuntu VM
On Flexiant

MySQL RDBMS

Wordpress App Stack

Wordpress Composition

Group of Cloud platforms for Wordpress software

Wordpress DB Stack

Apache Stack

Figure 8. Wordpress Application represented in CAM.

provisioning, deployment and management of cloud appli-
cation. It enhances the portability of cloud application and
has been supported by many partners like IBM, Reb Hat,
Cisco, Citrix, EMC, etc.

Since TOSCA is currently a mature standard with a lot
of supporting tools for designing and orchestration. In this
paper, we select this standard as a target of the translation
to demonstrate the feasibility of our proposed composable
application model.

1) Method Overview: The major differences between CAM
specification and TOSCA specification are:

• TOSCA specification represents a complete blueprint
of a cloud application system including the software
and the cloud infrastructure/platform parts while CAM
separates these two parts into independent entities.

• TOSCA expresses the internal structure of a cloud
service by a topology template which is a graph repre-
senting software/hardware components (as nodes), and
relationship among these components (as edges). CAM
represents a cloud application in a nested manner.

Thus, we design the translation from a CAM specification
to TOSCA specification in a process of the following steps:

• First, we combine the cloud software and its com-
patible platform group into a single form of CAM
specification.

• Second, we flatten the nested structure of the CAM
specification into a graph representation. Nodes of the
graph correspond to simple components and platform,
and edges of the graph represent the relationships
among simple components and platforms. This transla-
tion is done recursively based on the nested structure

39

Research and Development on Information and Communication Technology

Simple components:
 - Apache Server:

 type: software
 preqs: [Linux]
 pcaps: [Apache]

 - PhP Container:
 type: software
 preqs: [Apache]
 pcaps: [PhP, Apache]

 - WordpressApp:
 type: software
 preqs: [Apache, PhP]
 sreqs: [WordpressDB]

 - MySQLDB:
 type: software
 preqs: [Linux]
 pcaps: [MySQL]

 - WordpressDB:
 type: software
 preqs: [MySQL]
 scaps: [WordpressDB]

Stacks:
 - PhP-Apache Stack:

 type: stack
 top: PhP Container
 base: Apache Server
 preqs: [Linux]
 pcaps: [Apache, PhP]

 - WordpressApp Stack:
 type: stack
 top: WordpressApp
 base: Php-Apache Stack
 preqs: [Linux]
 sreqs: [WordpressDB]

 - WordpressDB Stack:
 type: stack
 top: WordpressDB
 base: MySQLDB
 preqs: [Linux]
 scaps: [WordpressDB]

Compositions:
 - Wordpress Composition:

 type: composition
 first: WordpressApp Stack
 second: WordpressDB Stack
 preqs:

 - [Linux]
 - [Linux]

Platforms:
 - UbuntuVM on Openstack:

 Type: os
 provider: OpenStack
 pcaps: [Linux]

 - UbuntuVM on Flexiant:
 Type: os
 provider: Flexiant
 pcaps: [Linux]

Wordpress Application:
 software: Wordpress Composition
 platforms: [UbuntuVM, UbuntuVM]

Figure 9. Wordpress application specification.

of CAM specification. The relationships are derived
from the specifications of stacks and compositions.

• Finally, we map the resulting graph into TOSCA
topology template. Here, the most cryptic part is that
we have to map each node of the graph to a node
template of TOSCA, and each edge of the graph to a
relationship template of TOSCA.

The following sub-section demonstrating this process in a
particular example – the Wordpress application.

2. Experiment with Wordpress Application

A typical Wordpress application is represented in CAM
as shown in Figure 8. The specification of the Wordpress
application is written in YAML as shown in Figure 9. We
temporary ignore all implementation details of the cloud
software components but only focus on the specification
of their requirements and capabilities. If a property of a
component is missed from the specification, we consider
the value of this property is null or empty.

In the second step of the translation process, we flat-
ten the Wordpress Application into a graph representation
which is depicted in Figure 10. This translation ignores the
specifications of requirements and capabilities of software
stacks and software compositions. They are only used for
verifying the correctness of the combination and for check-
ing the compatibility between the software composition and
its underlying platforms.

Finally, we map the graph representation to TOSCA
topology template as shown in the following XML code:

Nodes:
 - Apache Server:

 type: SimpleComponent
 preqs: [Linux]
 pcaps: [Apache]

 - PhP Container:
 type: SimpleComponent
 preqs: [Apache]
 pcaps: [PhP, Apache]

 - WordpressApp:
 type: SimpleComponent
 preqs: [Apache, PhP]
 sreqs: [WordpressDB]

 - MySQLDB:
 type: SimpleComponent
 preqs: [Linux]
 pcaps: [MySQL]

 - WordpressDB:
 type: SimpleComponent
 preqs: [MySQL]
 scaps: [WordpressDB]

 - UbuntuVMonOpenStack:
 provider: OpenStack

 pcaps: [Linux]
 - UbuntuVMonFlexiant:

 provider: Flexiant
 pcaps: [Linux]

Relationships:
 - from: WordpressApp
 to: PhP Container

 type: host-on
 - from: PhP Container
 to: Apache Server
 type: host-on

 - from: Apache Server
 to: UbuntuVMonOpenStack

 type: host-on
 - from: WordpressDB
 to: MySQLRDBMS
 type: host-on

 - from: MySQLRDBMS
 to: UbuntuVMonFlexiant

 type: host-on
 - from: WordpressApp
 to: WordpressDB
 type: connect-to

Figure 10. Wordpress application graph.

<?xml version=”1.0”?>
<ns2: Definitions id=”Wordpress”

xmlns:ns2=”http :// docs. oasis−open.org/ tosca /ns/2011/12”
name=”Wordpress”>

<ns2:ServiceTemplate id=”WordpressTopology”>
<ns2:TopologyTemplate>
<ns2:RelationshipTemplate

id=”WordpressApp HostOn PHPContainer”
type=”HOSTON”>

<ns2:SourceElement ref=”PhP Container”/>
<ns2:TargetElement ref=”WordpressApp”/>
</ns2:RelationshipTemplate>
<ns2:RelationshipTemplate

id=”PHPContainer HostOn ApacheServer”
type=”HOSTON”>

<ns2:SourceElement ref=”Apache Server”/>
<ns2:TargetElement ref=”PhP Container”/>
</ns2:RelationshipTemplate>
<ns2:RelationshipTemplate

id=”ApacheServer HostOn UbuntuVM”
type=”HOSTON”>

<ns2:SourceElement ref=”UbuntuVM”/>
<ns2:TargetElement ref=”Apache Server”/>
</ns2:RelationshipTemplate>
<ns2:RelationshipTemplate

id=”WordpressDB HostOn MySQLDB”
type=”HOSTON”>

<ns2:SourceElement ref=”MySQLDB”/>
<ns2:TargetElement ref=”WordpressDB”/>
</ns2:RelationshipTemplate>
<ns2:RelationshipTemplate

id=”MySQLDB HostOn UbuntuVM” type=”HOSTON”>
<ns2:SourceElement ref=”UbuntuVM”/>
<ns2:TargetElement ref=”MySQLDB”/>
</ns2:RelationshipTemplate>
<ns2:RelationshipTemplate

id=”WordpressApp ConnectTo WordpressDB”
type=”CONNECTTO”>

<ns2:SourceElement ref=”MySQLDB”/>
<ns2:TargetElement ref=”WordpressApp”/>
</ns2:RelationshipTemplate>
<ns2:NodeTemplate id=”UbuntuVM” type=”os” >

40

Vol. 2019, No. 1, September

...
</ns2:NodeTemplate>
<ns2:NodeTemplate id=”Apache Server” type=”software”>
...
</ns2:NodeTemplate>
<ns2:NodeTemplate id=”PhP Container” type=”software”>
...
</ns2:NodeTemplate>
<ns2:NodeTemplate id=”WordpressApp” type=”software”>
...
</ns2:NodeTemplate>
<ns2:NodeTemplate id=”WordpressDB” type=”software”>
...
</ns2:NodeTemplate>
<ns2:NodeTemplate id=”MySQLDB” type=”software”>
...
</ns2:NodeTemplate>
</ns2:TopologyTemplate>
</ns2:ServiceTemplate>
<ns2:ArtifactTemplate

id=”Artifact 93f8753b−17ab−43c5−8f11−e3ec98fe3224”
type=”sh”>

...
</ns2: ArtifactTemplate>
...
</ns2: Definitions >

As seen in the code above, all nodes of the graph
are mapped to Node Template of TOSCA, implementa-
tion details of the Node Template are omitted from the
specification for brevity. Edges of the graph are mapped
to Relationship Template. According to the original of the
edges, i.e., from a stack or from a composition, the type
of corresponding Relationship template will be given as
HOSTON or CONNECTTO.

Although CAM has not been fully developed, this
demonstration has proved the feasibility of the proposal
with distinct advantages.

V. CONCLUSION

In this study, we present a matchmaking method that
supports to find suitable cloud platforms, whose profiles
registered in a multi-cloud marketplace, to multi-component
cloud software. The goal of this work is to verify compat-
ibility among the components within a component-based
cloud application, as well as between the components
and their underlying runtime platforms. To implement this
idea, firstly, we redefine Composable Application Model
(CAM) that organizes multi-component cloud software in
a nested structure. Secondly, we develop an abstract model
of CAM which only covers the inter-dependency of the
components. We proposed validation rules for the CAM
components based on that type of dependency. Thirdly,
We proposed matchmaking algorithm which is the core of
brokerage mechanism of multi-cloud marketplace. Finally,
our proposal is validated by experimenting a transformation
from a specification of CAM into TOSCA specification.

To sum up, our work creates an effective brokerage
mechanism to retrieve optimal compatible platform so-
lutions for a specific multi-cloud software according to
consumer’s demand in the context of O-Marketplace. This
result is a premise for our future research related to Service
Level Agreement (SLA) in multi-cloud environment [24].

ACKNOWLEDGEMENT

This work is supported by Hanoi University of Science
and Technology under Project “Energy-aware workflow
service in cloud computing environment”, No. T2017-PC-
077. Simulations and technical realization were achieved
on the hardware equipment at the Center for Data and
Computation Technology, Hanoi University of Science and
Technology. We would like to thank all colleagues and
domain experts for collaborations and consultations.

REFERENCES

[1] A. Nayyar, Handbook of Cloud Computing, 04 2019.
[2] J. Guillén, J. Miranda, J. M. Murillo, and C. Canal, “A

service-oriented framework for developing cross cloud mi-
gratable software,” Journal of Systems and Software, pp.
2294–2308, 2013.

[3] G. Baryannis, P. Garefalakis, K. Kritikos, K. Magoutis,
A. Papaioannou, D. Plexousakis, and C. Zeginis, “Lifecycle
management of service-based applications on multi-clouds,”
in Proceedings of the 2013 International workshop on Multi-
cloud applications and federated clouds (Multicloud’13),
2013, pp. 13–20.

[4] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar,
“Multi-level elasticity control of cloud services,” in Service-
Oriented Computing, S. Basu, C. Pautasso, L. Zhang, and
X. Fu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 429–436.

[5] D. Garlan, R. T. Monroe, and D. Wile, “Acme: Architectural
description of component-based systems,” in Foundations of
Component-Based Systems, G. T. Leavens and M. Sitaraman,
Eds. Cambridge University Press, 2000, pp. 47–68.

[6] B. Wallace, “A hole for every component, and every com-
ponent in its hole,” Existential Programming, 2010.

[7] Mcllroy and M. Douglas, “Mass produced software compo-
nents,” Scientific Affairs Division, NATO, p. 79, 1969.

[8] R. Niekamp, “Software component architecture,” Gestión de
Congresos - CIMNE/Institute for Scientific Computing, p. 4,
2011.

[9] H.-L. Huynh, H.-D. Nguyen, V.-T. Le, and T.-T. Nguyen,
“A composable application model for cloud marketplace,”
Journal of Vietnam Science and Technology, vol. 16, no. 5,
pp. 40–45, 2017.

[10] H.-L. Huynh, H.-D. Nguyen, V.-T. Le, and D.-H. Le, “To-
wards the cloud marketplace for multi-cloud infrastructures,”
in 18th Vietnam National Conference: Selected issues of
information technology and communication, 2015.

[11] S. Kolb and G. Wirtz, “Towards application portability in
platform as a service,” in Proceedings - IEEE 8th Interna-
tional Symposium on Service Oriented System Engineering,
SOSE 2014, 2014.

[12] C. Zeng, X. Guo, W. Ou, and D. Han, “Cloud computing
service composition and search based on semantic,” in Cloud
Computing, M. G. Jaatun, G. Zhao, and C. Rong, Eds.

41

Research and Development on Information and Communication Technology

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
290–300.

[13] B. I. Zilci, M. Slawik, and A. Küpper, “Cloud service
matchmaking using constraint programming,” in 2015 IEEE
24th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, June 2015, pp.
63–68.

[14] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A
framework for comparing and ranking cloud services,” in
2011 Fourth IEEE International Conference on Utility and
Cloud Computing, Dec 2011, pp. 210–218.

[15] F. DAndria, S. Bocconi, J. G. Cruz, J. Ahtes, and D. Zeginis,
“Cloud4SOA: Multi-cloud application management across
PaaS offerings,” in 2012 14th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing,
Sep. 2012, pp. 407–414.

[16] S. Garcı́a-Gómez, M. Jiménez-Gañán, Y. Taher, C. Momm,
F. Junker, J. Bı́ró, A. Menychtas, V. Andrikopoulos, and
S. Strauch, “Challenges for the comprehensive management
of cloud services in a PaaS framework,” Scalable Comput-
ing: Practice and Experience, vol. 13, 2012.

[17] W. Elshareef, H. A. Ali, and A. Y. Haikal, “A matchmaking
strategy of mixed resource on cloud computing environ-
ment,” International Journal OF Scientific and Technology
Research, vol. 4, 2015.

[18] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-
based approach to software development and deployment
on cloud,” in 2010 24th IEEE International Conference on
Advanced Information Networking and Applications, April
2010, pp. 414–421.

[19] E. Brandtzaeg, S. Mosser, and P. Mohagheghi, “Towards
CloudML, a model-based approach to provision resources
in the clouds,” in 8th European Conference on Modelling
Foundations and Applications (ECMFA), 2012, p. 18–27.

[20] “OpenStack HEAT URL,” accessed: 2019-04-26. [Online].
Available: https://docs.openstack.org/heat/latest

[21] “Juju Charms URL,” accessed: 2019-04-26. [Online].
Available: https://jujucharms.com

[22] K. Saatkamp, U. Breitenbücher, O. Kopp, and F. Ley-
mann, “Topology splitting and matching for multi-cloud
deployments,” in Service-Oriented Computing-ICSOC 2017
Workshops, 2017, pp. 379–383.

[23] OASIS, “Topology and orchestration specification for cloud
applications version 1.0,” Organization for the Advacement
of Structured Information Standards, 2013.

[24] D. Kourtesis, K. Bratanis, A. Friesen, Y. Verginadis, A. J. H.
Simons, A. Rossini, A. Schwichtenberg, and P. Gouvas,
“Brokerage for quality assurance and optimisation of cloud
services: An analysis of key requirements,” in Service-
Oriented Computing – ICSOC 2013 Workshops, A. R. Lo-
muscio, S. Nepal, F. Patrizi, B. Benatallah, and I. Brandić,
Eds. Cham: Springer International Publishing, 2014, pp.
150–162.

Huynh Hoang Long received B.Sc. de-
gree from Nhatrang University in 2008
and M.Sc. degree from Hanoi University
of Science and Technology in 2012. His
research interest includes cloud computing.

Nguyen Huu Duc received Ph.D. de-
gree in Computer Science from Japan Ad-
vanced Institute of Science and Technology
(JAIST), Japan, in 2006. He is currently the
director of the Center for Data and Com-
putation Technologies, Hanoi University of
Science and Technology.

His main research topics include com-
piler construction, high performance computing, distributed sys-
tems and big data.

Le Trong Vinh received Ph.D. degree
in Computer Science from Japan Ad-
vanced Institute of Science and Technol-
ogy (JAIST), Japan, in 2006. He is cur-
rently Associate Professor and the director
of the Center for Information Technology
and Communication, University of Science,
Vietnam National University, Hanoi.

His main research topics include theory of algorithms, com-
puter networks.

42

