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Abstract: Preserving, maintaining, and teaching traditional
martial arts are very important activities in social life. That
helps individuals preserve national culture, exercise, and prac-
tice self-defense. However, traditional martial arts have many
different postures as well as varied movements of the body and
body parts. The problem of estimating the actions of human
body still has many challenges, such as accuracy, obscurity,
and so forth. This paper begins with a review of several
methods of 2-D human pose estimation on the RGB images,
in which the methods of using the Convolutional Neural
Network (CNN) models have outstanding advantages in terms
of processing time and accuracy. In this work we built a small
dataset and used CNN for estimating keypoints and joints of
actions in traditional martial arts videos. Next we applied
the measurements (length of joints, deviation angle of joints,
and deviation of keypoints) for evaluating pose estimation
in 2-D and 3-D spaces. The estimator was trained on the
classic MSCOCO Keypoints Challenge dataset, the results
were evaluated on a well-known dataset of Martial Arts,
Dancing, and Sports dataset. The results were quantitatively
evaluated and reported in this paper.

Keywords: Estimation of keypoints, pose estimation,
deep learning, skeleton, conserving and teaching traditional
martial arts.

I. INTRODUCTION

Estimating and predicting actions of human body are
well-studied problems in the robotics and computer vision
community [1]. Application domains include social safety,
preservation of cultural identity values (conserving and
maintaining traditional martial arts and national dance
songs), production of toys and games, interaction with
intelligent robots, sports analysis (tactical analysis in sports
such as football, tennis, badminton, etc.), health protection
(detection of falling events in hospital for the elderly), etc.
Solving these problems can be based on a set of methods
such as analyzing people in the images, locating people in

the images, locating keypoints on human bodies, and identi-
fying joints (skeleton) from the points featuring their body.

The problem of estimating the skeleton from the image of
a person is usually based on color images, depth images, or
the contexts of objects and actions [1]. The above systems
often use color image information, depth information [2],
or skeleton [3] obtained from different types of sensors.
In particular, the Microsoft (MS) Kinect sensor version 1
(v1) is a common and cheap sensor that can collect several
types of information such as color, depth, skeleton, and
acceleration vector [4].

Color is the most common type of information obtained
from cameras/sensors. Changes of appearance and posture
of the human body structure in the image create a set
of characteristics of deformation part model (DPM). That
makes it difficult to estimate the shape and joints of the
human body. The transformation of a complex human body
is made up of changes in human body parts, which can be
common transformations such as translation, rotation, and
resizing. Previous studies often train DPM feature sets for
detecting, recognizing, and estimating human postures and
poses in images [5–7].

Recently, human pose estimation is still very chal-
lenging [3] in such terms as processing time and ac-
curacy [8], especially for 3-D human pose estimation
performed on datasets which have many occlusions [9].
Currently, with strong development of deep learning for
detection, recognition, and human action estimation, it
has become a good approach for solving these problems.
There are many proposed Convolutional Neural Networks
(CNNs) which achieved very good results in detecting
and recognizing objects, such as Fast R-CNN [10], Faster
R-CNN [11], and YOLO [12, 13]. Recently, there have
been many studies of skeleton estimation on images using
CNN models, such as [14–16].
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Figure 1. Keypoints on the human body and the labels.

In this work we only use the CNN model which was
proposed and trained as [17] to estimate and predict the
actions of people in videos of instructors and practitioners
performing martial arts. This approach is based on the
model that is trained from the confidence maps of feature
vectors [18] which are extracted from the training images.
The trained model estimates the keypoints on the human
skeleton model as seen in Figure 1. In particular, this
approach can estimate the posture of people based on the
skeleton in case of being obscured.

Data obtained from the MS Kinect sensor includes color
images, depth images, and correspondence. The first two
types of data are calibrated to a center based on the
approach and the intrinsic matrix of the MS Kinect sensor
v1 proposed by Nicolas et al. [19]. Each frame builds
a scene in 3-D environment. The estimated results of
keypoints and joints are also transferred to 3-D space. It
is then possible to build a martial arts teaching application
in a more intuitive way.

The main contributions of this work include: (i) us-
ing a CNN model for 2-D human pose estimation on
RGB images, achieving outstanding advantages in terms
of processing time and accuracy; (ii) a small dataset of
traditional martial arts videos and using the CNN-based
pose estimation model [17] trained on the COCO [20]
dataset to evaluate the skeleton estimations performed on
the contributed dataset and the dataset of Zhang et al. [21];
and (iii) proposing measurements to evaluate human pose
estimations in 2-D and 3-D spaces.

II. RELATED WORKS

In Vietnam [22, 23] as well as many countries in the
world like China [24], Japan, and Thailand, there are
many martial arts postures or martial arts that need to
be preserved and passed down to posterity. Conservation
and storage in the era of technology can be done in many

different ways. An intuitive approach is to save the joints
in the skeleton model of a martial arts instructor. Data
obtained from MS Kinect sensor v1 usually contains a lot of
noise and is lost when being obscured, especially skeleton
data of people. The skeleton data is important and presents
the human pose in a video action.

In the past, studies often looked into deformation part
model features to address the problem of skeleton estima-
tion on images. Felzenszwalb et al. [5] proposed a method
for training a multiscale deformation part model (DPM)
for object detection on images. In a partial deformation
model approach, the human body is represented as a star-
shaped structure, consisting of a root filter, a set of part
detectors, and a partial deformation model. In the DPM
model, deformation refers to relative positions of the body
parts. An SVM (Support Vector Machine) classifier is
trained on extracted features to predict the positions of the
human body parts. Sun et al. [6] proposed a model based on
the Articulated Part-based Model (APM) to detect parts of
the human body and estimate the posture of the person. The
APM model represents an object as a collection of parts at
a level of details in the range from coarse to smooth, in
which parts at all levels are connected to a coarser level
through a parent-child relationship. Pishchulin et al. [25]
as well as Andriluka [26] used the method of dividing
the human body into parts and training the model on the
parts for the estimation of one’s body pose. Andriluka et
al. [26] used AdaBoost for predicting the posture of the
person. Umer et al. [27] used Regression Forests to estimate
the direction of users on depth images obtained from MS
Kinect sensor v2. The model estimation was performed on
the parts of the labeled person, with 1000 sample position
patterns on depth images. However, the highest average
accuracy was just 35.77%.

Recently, with the strong development of deep learning,
the estimation of keypoints on human body is often done
by CNN models. Daniil et al. [14] introduced a new CNN
model for learning the features on a keypoint dataset: the
location of keypoints and the relationship between pairs
of points on the human body. This new network is based
on the OpenPose toolkit [17] and training can be done
without GPU (CPU only). In particular, the CNN model
of this study is trained and evaluated on the COCO 2016
key-point challenge dataset [20]. This is a huge dataset
of labels containing images of over 150 thousands people
with 1.7 million labels of keypoints. Kyle et al. [15] used
a CNN model to learn from the data of the keypoints of
the human body that were marked and extracted from the
connection data when projecting two cameras into people.
The result was then projected into 3-D space and then the
least squared distance algorithm was used to evaluate the
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Figure 2. Illustration of heatmaps predicted from human body image. Therein, each heatmap is a candidate prediction of keypoint locations (G, H) [28].

obtained estimates. Cao et al. [18] used a CNN model
to learn the positions of keypoints on the human body
and the geometric transformations of the lines connecting
the keypoint pairs with the above connected human body.
Evaluations were conducted on two classic datasets, the
MPII [29] and the COCO [20]. In particular, the COCO
dataset of keypoints [30, 31] has been developed for many
years. MPII and COCO datasets contain images of hundreds
of thousands of people and have been used in many
challenges/competitions on human activity estimation.

Toshev et al. [32] estimated human posture and skeleton,
considering the human skeleton as a CNN-based regression.
The authors also used a sequence of regression variables
to correct the posture and skeleton estimations to get a
better estimation. It is important that this method is based
on a completed shape of posture and skeleton. When
the joints are obstructed, they can be estimated from the
completed posture and the skeleton structure. The model
in this study is trained on the AlexNet backend network of
seven layers, in which the final layer is used to complete the
trained model and the target output values of the regression,
the number of target values was about 2000 in term of
joint coordinates.

Tompson et al. [28] created heatmaps by simultaneously
running an image through many different resolutions to col-
lect multi-resolution features at the same time. The output
is a discrete heatmap instead of continuous regression. A
heatmap predicts the probability of joints at each pixel, in
which each heatmap area is a candidate of the location of
keypoints on the human body (heatmap areas are created
as shown in Figure 2).

In addition to the training method and the prediction of
heatmaps, Wei et al. [33] proposed a network that trains
through many phases on the characteristic set of images.
They provided a sequential predictive framework focusing
on training highly predictive models. Output heatmaps of
the previous stage are used as input of the later stages, with
which the best accuracy obtained by this model on the MPII
dataset [34] was 87.95%.

Andriluka et al. [35] published a dataset that is struc-
tured and organized similarly to the classic datasets. These
benchmark datasets provide training sets, validation sets,
and testing sets to train and evaluate deep learning-based
methods. In particular, they also established performance
metrics for direct and fair comparison across numerous
competing approaches. Girdhar et al. [16] proposed a 3-
D human pose predictor by inflating the 2-D convolutions
into 3-D [36] to extend the Mask RCNN [37] with spatio-
temporal operations. This work used the Mask RCNN [37]
for 2-D human pose estimation, the tracking process was
the combination of 2-D human pose estimation results and
temporal information. This method achieved high accura-
cies on the challenging PoseTrack benchmark dataset [35].
However, since this method must predict the box, the
segmentation, and the keypoints, the processing time of
testing is large (5 frames/s with 8 GPUs). Meanwhile, the
method proposed by Cao et al. [18] is able to process
about 10-15 frames/s with a 12 GB GPU.

III. HUMAN POSE ESTIMATION

The activity of the human body is detected and recog-
nized as well as predicted and estimated based on body
parts. 3-D human pose estimation employs either one of
the two basic methods: (1) estimating the 3-D human pose
from a single image (RGB or depth), and (2) estimating
the 3-D human pose from an image sequence. There are
many studies on 3-D human pose estimation that use the
single-image method [9, 38, 39]. In these studies, the
keypoints and joints are estimated on 2-D images and then
mapped to the 3-D space. This model is often applied to
estimating 3-D human pose, as shown in Figure 3 [40].

In this paper, to estimate the 2-D human pose, we use the
method of Cao et al. [18]. The architecture of the CNN to
train the model is shown in Figure 3. This CNN consists of
two branches performing two different jobs. From the input
data, a set F of feature maps is created from image analysis,
these confidence maps and affinity fields are detected at
the first stage.
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Figure 3. The architecture of the two-branch multi-stage CNN for training the estimation model [18].

Figure 4. Illustration of the detailed model to predict heatmaps [33].

Details on Cao’s model training and prediction (Figure 4)
[18] are shown as follows. The input image at stage 1 is an
RGB image which has a size of ℎ × F. Features extracted
from convolutions with masks of sizes 9×9, 2×2, 5×5, . . .
for the training set X as shown in Figure 5. For each mask,
there will be a trained model at each stage. As shown in
Figure 4, models 61 and 62 at stages 1 and 2 will predict
the heatmaps 11 and 12, respectively. In Figures 4 and 5,
the Convolutional Pose Machines consist of at least 2 stages
and the number of phases is a super parameter (usually 3
stages). The second stage takes the resulted heatmaps of the
first stage as the input.

Therein, each heatmap indicates the location confidence
of the keypoints as a function of (G, H). Keypoints on the
training data are displayed on confidence maps as shown in
Figure 4. These points are estimated by the trained model
as the keypoints on input color images. The first branch
(top branch) is used to estimate the keypoints, the second

branch (bottom branch) is used to predict the affinity fields
matching joints on people.

In addition, we also render a 3-D environment of each
video’s scene and project the results of 2-D human pose
estimation into the 3-D space, based on the intrinsic param-
eter of the Kinect sensor v1, using the PCL library [41] and
the OpenCV library [42] functions. The real coordinates
(G? , H? , I?) and color values of each pixel when projected
from 2-D to 3-D space are calculated as in Eq. 1.

-? =
(G0−2G )∗34?CℎE0;D4 (G0 ,H0)

5G

.? =
(H0−2H )∗34?CℎE0;D4 (G0 ,H0)

5H

/? = 34?CℎE0;D4(G0, H0)
� (A, 6, 1) = 2>;>AE0;D4(G0, H0)

(1)

where 34?CℎE0;D4(G0, H0) is the depth value of a pixel at
(G0, H0) on the depth image, and 2>;>AE0;D4(G0, H0) re-
turns the RGB color values of that pixel on the color image.
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Figure 5. Illustration of the detailed model to extract features for training model and to predict heatmaps at each stage [33].

Figure 6. MS Kinect sensor v1.

In regard to the process of combining color and depth
information of a pixel to obtain a point in 3-D space, for
cases where the depth values of pixels in the depth image
are lost (value is zero), we use the average depth value of
pixels in their 50 × 50 neighborhood.

In our experiments, results of 2-D human pose estimation
are the keypoints {(G4, H4) |4 ∈ {1, 2, ..., 25}}. The joints are
then joined according to a predefined order.

IV. EXPERIMENTAL RESULT

1. Data Collection

There are many different types of image sensors that can
collect information about martial arts teaching and learning.
The MS Kinect v1 sensor as seen in Figure 6 is the cheapest
sensor today. This type of sensor can collect a lot of
information such as color images, depth images, skeletons,
acceleration vectors, sound, etc. From the collected data,
it is possible to recreate the environment in 3-D space.
However, in this work we only use color images captured
by the MS Kinect v1 sensor.

Figure 7. Illustration of the obtained image from MS Kinect sensor v1
and annotated keypoints of the skeleton model.

To capture data from the sensor, the MS Kinect SDK 1.8
is used [43]. To perform data collection on computers,
we use a data collection program developed at MICA
Institute [44] with the support of the OpenCV 3.4 li-
braries [42]. Calibration is required in order to generate 3-D
data from color and depth images. Particularly, we apply the
calibration methods of Zhou et al. [45] and Jean et al. [46].
In these two calibration tools, the calibration matrix is used
as follows:

�< =


5G 0 2G

0 5H 2H

0 0 1

 , (2)

where (2G , 2H) is the principle point (usually the image
center) and ( 5G , 5H) is the focal length vector. The matrix
�< (in Nicolas et al. [19]) is given as follows:

�< =


594.214 0 339.307

0 591.040 242.739
0 0 1

 . (3)

In this work, we use two datasets for evaluating the model
pose estimation [17]. The first dataset is collected from a
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Figure 8. Illustrations on ground-truth for keypoints. Red points are
keypoints on the human body. Blue segments show connections between
parts of the human body.

Figure 9. Illustration of the estimated results of the keypoints and joints.

MS Kinect v1 sensor, which can collect data at a rate of
about 10 frames/s on a low-performance laptop. The MS
Kinect sensor v1 is mounted on a fixed rack; the martial
arts instructor presents in a 3 × 3m space as in Figure 10.
It is called "VNMA - VietNam Martial Arts," captured in
a martial arts class in Binh Dinh province, Vietnam. Binh
Dinh martial art is one of the famous traditional martial
arts of Vietnam.

The obtained images (color images and depth images) are
640×480 in pixels. The dataset consists of 14 videos of dif-
ferent postures, with the number of frames listed in Table I
and illustrated in Figure 8. This dataset features a martial
arts instructor with 14 different postures. The number of
frames is the number of poses in each video. The ground-
truths for keypoints are manually prepared, as illustrated
in Figures 8 and 9. The ground-truth data in each image,
which contains a single person, includes 18 keypoints.

TABLE I
NUMBER OF FRAMES IN MARTIAL ARTS POSTURES

Video 1 2 3 4 5 6 7
Number

of frames 120 74 100 87 80 88 87

Video 8 9 10 11 12 13 14
Number

of frames 74 71 90 100 97 65 68

Figure 10. Illustration of MS Kinect v1 sensor settings and data
collection space.

The second dataset called Martial Arts, Dancing, and
Sports[21] consists of both multi-view RGB videos and
depth videos. This dataset contains five action types: Tai-
chi, Karate, Hip-hop dance, Jazz dance, and sports. The
frame rate is 10 fps for Tai-chi and Karate, or 20 fps
for jazz, hip-hop, and sports videos. The resolution of the
images are 1024×768 in pixels. However, all the frames in
this dataset are resized to 512 × 384 pixels. Ground-truth
data was prepared for 3-D poses, using a MOCAP (MOtion
CAPture) system [47] by Motion Analysis. Seven MOCAP
cameras were placed on the walls around the capture space
to record the positions of markers on the human body.
The MOCAP system works at 60 fps. The dataset contains
ground-truth data for 19 joints: neck, pelvis, left hip, left
knee, left ankle left foot, right hip, right knee, right ankle
right foot, left shoulder, left elbow, left wrist, left hand, right
shoulder, right elbow, right wrist, right hand, and head.

We use only Tai-chi and Karate videos of color and depth
images that contain 11200 frames. The camera calibration
matrix of the capture system is given by

�< =


331 0 254.097
0 331 180.032
0 0 1

 . (4)

Figure 11 illustrates the point cloud data of a scene when
a person presents Karate.

We use the 2016 MSCOCO Keypoints Challenge
dataset [48] to train the model, because our collected
dataset (VNMA - VietNam Martial Arts) is small and the
MADS (Martial Arts, Dancing, and Sports) dataset provides
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Figure 11. Illustration a point cloud data of a scene. The blue points
represents the human body in the 3-D environment.

only 3-D ground-truth data. The training dataset consists
of over 100K people and a million labeled keypoints. Each
person is marked by 17 keypoints, which are sorted by the
following order: "nose," "left_eye," "right_eye," "left_ear,"
"right_ear," "left_shoulder," "right_shoulder," "left_elbow,"
"right_elbow," "left_wrist," "right_wrist," "left_hip,"
"right_hip," "left_knee," "right_knee," "left_ankle," and
"right_ankle." The model is trained for estimating and
labeling these 17 keypoints on the human body.

A toolkit [49] is used for model training and testing.
This toolkit is installed on Ubuntu 16.2 and supported
by several libraries: OpenPose C++ library (for testing
only) [17], Tensorflow version 1.8 [50], Pytorch [18, 51],
Caffe2 [52], Chainer [53], MXnet [54], MatConvnet [55],
and CNTK [56]. Readers are referred to [18, 48] for
details. The training tool and the testing tool are written
in Python/Matlab/C++ language and run on a workstation
computer which has the following configurations: Intel (R)
Xeon (R) CPU E5-2420 v2 @ 2.20 GHz 16 GB RAM and
GTX 1080 Ti GPU with 12 GB RAM. The trained model is
used to estimate 25 keypoints in the following order: "nose,"
"neck," "right shoulder," "right elbow," "right wrist," "left
shoulder," "left elbow," "left wrist," "mid hip," "right hip,"
"right knee," "right ankle," "left hip," "left knee," "left
ankle," " right eye," "left eye," "right ear," "left ear," "left
big toe," "left small toe," "left heel," "right big toe," "right
small toe," and "right heel."

The CNN training parameters are as follows1: size of the
input images is 368× 368× 3 (width x height x number of
channels), 10C2ℎ(8I4 = 16, BC02:B = 4, and the number
of stages is 6 for pooling. Our collected VNMA dataset is
still small, therefore we have not divided this dataset into
training set, validation set, and testing set. This dataset is
used only for testing.

1Detailed parameters are shown in https://github.com/ZheC/Realtime_
Multi-Person_Pose_Estimation/blob/master/training/example_proto/pose_
train_test.prototxt.

2. Evaluation Method

As in [18], we use Object Keypoint Similarity (OKS)
measure for evaluating the similarities between estimated
and ground-truth joints. The formula for calculating OKS
is given by [48]:

OSK =
|�ground − 'result |

�ground
, (5)

where �ground is the length of a ground-truth joint vector,
'result is the length of the corresponding estimated joint
vector. The Average Precision (AP) is calculated based on
the threshold value of 0.5 for OKS. Therein, if OKS > 0.5,
meaning the difference is greater than 50% of length, then it
is considered a false estimate, otherwise it is a true estimate.

We also propose another metric called the angle of
deflection between an estimated joint V� its corresponding
ground-truth joint V� , which is the angle between the two
vectors: � = arccos(V� ,V� ). If � ≤ 10> it is considered
a true estimate, otherwise it is a false estimate. Denote AD
the ratio of true estimates over the total number of joints,
and DP the average distance between estimated keypoints
and ground-truth keypoints.

The average distance in 2-D space is given by

DP2D = �

[√
(G6 − G4)2 + (H6 − H4)2

]
, (6)

where G4 and H4 are the coordinates of an estimated key-
point, while G6 and H6 are the coordinates of its correspond-
ing ground-truth keypoint, � is the expectation operator.

The average distance in 3-D space is given by

DP3D = �

[√
(G6 − G4)2 + (H6 − H4)2 + (I6 − I4)2

]
, (7)

where G4, H4, and I4 are the 3-D coordinates of an estimated
keypoint, while G6, H6, and I6 are the 3-D coordinates of
its corresponding ground-truth keypoint.

3. Results and Discussion

Performance of 2-D pose estimation on the VNMA
dataset is presented in Table II. The average value of �%
in Tabble II is 95.6%. For noisy data performance could be
significantly lower, an example is video #4 (AP = 89.6%).

Pose estimation results are shown in Table II and
Figure 12, in which 25 keypoints are estimated on the
human body. However, the corresponding ground-truth data
provides only 20 keypoints on each person, therefore the
performance evaluation is performed on only 20 of the 25
estimated keypoints. It can be seen that the estimation
results are highly accurate, although the model trained on
the MSCOCO Keypoints Challenge dataset [48] and our
test data contain a lot of noise. The average accuracy ratio
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Figure 12. Results of joint estimation shown in 2-D and 3-D spaces.

AD, which is based on the angles of deflection between
the estimated joints and the ground-truth, is 95.3% for
this test dataset. The average value of DP2D which is the
deviation between estimated keypoints and the ground-truth
in 2-D image space is 14.73 pixels2. Figure 12 shows
estimated skeletons in 2-D and 3-D spaces, represented
by 17 keypoints3.

We also measure prediction probabilities in term of In-
tersection of Union (IOU) for all keypoints of three videos.
These probabilities are represented as heatmaps produced
by the CNN model, in which each heatmap area shows
the confidence scores associated with candidate positions
of a keypoint, as presented in Figures 4 and 5. Resulted
probability distributions are shown in Figure 13. We can see

2Details of the estimated results are available at this link:
https://drive.google.com/file/d/1BaFxUbOJvRll5tkgYQW98VOp6LC414Im/
view?usp=sharing.

3The source code using OpenPose library is shared at the following link:
https://drive.google.com/file/d/1OZO8m7TvtZUD55zf1TAU1HTWCk-u4pb8/
view?usp=sharing.
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Figure 13. Probability distributions of the keypoint candidates predicted
by the CNN model for three martial arts videos.

that all three distributions are peeked within 0.8 to 0.9. That
means the trained model in [17] has good predictability.

Performance of 3-D pose estimation on the MADS
dataset is presented in Tables III and IV. From the figures
in Table III, the average value of AP is 75.93% and
average accuracy ratio AD is 79.62% and the estimated
2-D skeleton results are illustrated in Figure 14. Table IV
compares performances of the TGP-KNN method [57] and
the Pose toolkit [17] on the MADS dataset, using the
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TABLE II
AVERAGE PRECISIONS FOR ESTIMATED JOINTS (�%), AVERAGE RATIOS OF TRUE ESTIMATES FOR JOINTS (��), AND AVERAGE DEVIATIONS OF

ESTIMATED KEYPOINTS IN 2-D IMAGE SPACE (DP2D) OBTAINED ON THE VIDEOS OF THE VNMA DATASET

Video 1 2 3 4 5 6 7 8 9 10 11 12 13 14
AP (%) 95.4 93.7 96.2 89.6 96.1 92.8 97.4 98.8 96.9 94.5 96.9 96.2 95.7 98.2
AD (%) 93.7 94.6 92.8 90.9 95.3 94.6 95.8 97.6 97.8 95.1 97.0 95.8 96.3 96.9

DP2D (pixels) 21.2 18.6 9.7 25.9 13.8 15.7 9.4 15.4 12.4 10.1 14.0 12.8 11.3 16.9

TABLE III
AVERAGE PRECISIONS FOR ESTIMATED JOINTS (AP) AND AVERAGE RATIOS OF TRUE ESTIMATES FOR JOINTS (AD) OBTAINED ON THE VIDEOS OF

THE MADS DATASET

Video 1 2 3 4 5 6 7 8 9 10 11 12
AP (%) 71.20 70.53 72.64 60.53 80.50 73.22 81.95 91.31 55.19 86.65 79.98 87.46
AD (%) 80.45 75.83 80.76 62.46 78.77 78.93 89.13 87.65 59.84 86.46 86.94 88.2

TABLE IV
AVERAGE 3-D DEVIATIONS DP3D (MM) BETWEEN ESTIMATED KEYPOINTS AND THE GROUND-TRUTH FOR VIDEOS OF THE MADS DATASET, USING

TWO DIFFERENT METHODS

Video 1 2 3 4 5 6 7 8 9 10 11 12
TGP-KNN [57] 214.4 167.4 246.7 149.3 119.5 197.2 119.4 114.2 214.5 113.2 98.4 133.7

Pose toolkit
[17] 198.23 154.38 252.3 148.44 120.34 188.75 112.68 116.3 206.65 104.29 102.34 120.55

deviations between estimated keypoints and the ground-
truth in 3-D space. The TGP-KNN results are those reported
in [21]. The processing time to estimate keypoints and joints
is about 75 ms per frame.

Figure 15 illustrates the color point cloud of a scene
in the VNMA dataset. Therein, the coordinate system (the
G-axis is colored red, the H-axis is colored green, and the I-
axis is colored blue) of the MS Kinect v1 sensor is shown in
the original frame. Figure 16 illustrates 3-D joint estimation
results from a scene. The human body is presented by the
point cloud.

Figure 17 shows the estimated results in the 2-D space
of the proposed dataset. This dataset were collected from a
MS Kinect v1 sensor. However, in martial arts presentation,
cases vary and the posture of the person must rotate
in many different directions. Therefore, there are many
cases where many actions are obscured. In order to build
a conservation application for training martial arts and
evaluating martial arts videos, the bone joints of these
actions should be restored.

V. CONCLUSION AND FUTURE WORK

In this paper, we first reviewed some methods for 2-D
human pose estimation on RGB images. It was proposed to
use a CNN model for estimating keypoints to predict the
actions of the martial arts instructor on a traditional martial

arts video dataset that we contribute. Finally, we presented
methods for evaluating the estimated keypoints and joints
by 2-D and 3-D metrics. From the estimated joints human
actions can be drawn about. Therefore, training martial arts
by videos becomes easier and more explicit.

In martial arts videos, the actions (movements of body,
arms, and legs) of a martial arts instructor are not always
clear because there are many hidden joints. There are some
cases where the joints are obscured in the videos that
the model was unable to estimate. In the future, we will
conduct studies to estimate obstructed joints. When there
are sufficient joints, it is possible to build a visual martial
arts teaching model and to evaluate the performance of
traditional martial arts representations.
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