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Abstract: Machine learning-based intrusion detection has
become more popular in the research community thanks to its
capability in discovering unknown attacks. To develop a good
detection model for an intrusion detection system (IDS) using
machine learning, a great number of attack and normal data
samples are required in the learning process. While normal
data can be relatively easy to collect, attack data is much
rarer and harder to gather. Subsequently, IDS datasets are
often dominated by normal data and machine learning models
trained on those imbalanced datasets are ineffective in detect-
ing attacks. In this paper, we propose a novel solution to this
problem by using generative adversarial networks to generate
synthesized attack data for IDS. The synthesized attacks are
merged with the original data to form the augmented dataset.
Three popular machine learning techniques are trained on the
augmented dataset. The experiments conducted on the three
common IDS datasets and one our own dataset show that
machine learning algorithms achieve better performance when
trained on the augmented dataset of the generative adversarial
networks compared to those trained on the original dataset
and other sampling techniques. The visualization technique
was also used to analyze the properties of the synthesized
data of the generative adversarial networks and the others.

Keywords: Generative adversarial networks, intrusion detec-
tion system, synthesized attack, imbalanced dataset, sampling
technique.

I. INTRODUCTION

Communication networks and information systems have
become a very important factor in almost every facet of
our daily lives [1, 2]. The rapid development of Internet
services and communication networks has revolutionized
our perspective of the world. Nevertheless, this also resulted
in the information systems being very vulnerable to one or
more types of cyber attacks. The security of communication
networks and information systems is therefore an increasing
concern for cyber security officers, network administrators

and end-users. Among several approaches to protect infor-
mation systems, Intrusion Detection System (IDS) plays a
crucial role for early detecting of security violation [1].

IDS monitors the network traffic to find any abnormal
activity. There are three popular methods for analyzing
the network traffic to detect intrusive behaviors: statistical-
based, machine learning-based, and knowledge-based meth-
ods [3]. Among these, machine learning-based methods
have received a great attention and achieved remarkable
success recently [1, 4–15] even for encrypted network traf-
fic [16, 17]. To train a good detection model for IDS in the
real world, a considerable number of attack and normal data
samples are required to be gathered. Compared to normal
data, intrusive data is more scarce and more expensive
to collect. Thus, the collected network traffic datasets for
intrusion detection are often imbalanced. Subsequently, the
ability to handle imbalanced data is essential for machine
learning algorithms to achieve a good accuracy in intrusion
detection.

The imbalance of class samples can reduce the perfor-
mance of a machine learning based IDS [18]. In this paper,
we propose a novel approach to tackle the imbalanced
problem of IDS datasets by using generative adversarial
networks (GANs) to generate synthesized attack data. The
synthesized data is then combined with the original data
to form the augmented training data. Three conventional
classifiers including decision tree (DT), random forest (RF),
and support vector machine (SVM) are trained on the
augmented dataset. The experiments were conducted on
three popular IDS datasets, i.e., NSL-KDD [19], UNSW-
NB15 [20], CICIDS2017 [21], and one our own dataset
(i.e., RAWDATA). The results showed that machine learn-
ing algorithms achieve better performance when trained on
the augmented dataset of GANs compared to those trained
on the original dataset and the datasets generated by some
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popular sampling techniques.

The main contribution of this paper is the demonstration
of the usefulness of GANs in addressing the imbalance
problem in IDS datasets. Compared to [22] where we
originally proposed this technique, here we present a better
version of using GANs for generating synthesized data and
examine them in detail on a wide range of benchmarks. The
rest of the paper is organized as follows. Section II briefly
reviews the previous works in applying machine learning
to IDS and the methods for dealing with imbalanced
datasets. Section III presents the fundamental background
of our paper. The proposed method is then described in
Section IV. The tested datasets and experimental settings
are provided in Section V. Section VI presents experimental
results and the analysis. The conclusions and future work
are discussed in Section VII.

II. RELATED WORK

This section presents a brief review of using machine
learning in IDS and the techniques for addressing imbal-
anced data.

1. Machine learning for Intrusion Detection

Machine learning for intrusion detection has received a
considerable attention in the research community [1, 4–
9, 11, 12, 23, 24]. For a comprehensive review and analysis
of different machine learning techniques in IDS, the readers
are recommended to see [25]. In this paper, we shortly
summarize recent and related research to our topic. Usu-
ally, machine learning is applied to intrusion detection to
automatically build a detection model based on the training
dataset. Machine learning techniques for IDS can be divided
into two categories: a single and a hybrid method. The
single method attempts to use only one machine learning
technique to find the model which is then used to recognize
whether the incoming access is a normal access or an
attack [1]. The popular single learning algorithms used in
the IDS include SVM, K-mean, Artificial Neural Network
(ANN), RF, and DT [9–12, 26].

The hybrid method aims to combine two or more learning
techniques to enhance the performance of the systems.
There are several ways in which different algorithms can
be hybridized. The first method is by cascading different
classifiers. For example, Hussain et al. [4] proposed a two
stage hybrid method using SVM as an anomaly detection
in the first stage, and ANN as a misuse detection in the
second stage to enhance accuracy of IDS. Aburomman
et al. [23] proposed an ensemble classifiers by using the
weighted majority algorithm (WMA) approach of particle
swarm optimization with the SVM and K-Nearest Neighbor

algorithm to enhance the accuracy of IDS. Aburomman et
al. [24] also compared the effectiveness of various ensemble
techniques (Boosting, Voting, and Stacking) for IDS. Other
methods are based on re-sampling data samples and then
taking a majority vote of the resulting weak learners [27].
Several other approaches [28, 29] aimed to collect datasets
to improve the accuracy of IDS.

Recently, deep learning has been applied to improve
the accuracy of IDS [13, 14, 30, 31]. Malaiya et al. [13]
used Convolutional Neural Network (CNN) for detecting
abnormal behaviours in the network. They used the 1D-
feature of the network traffic in IDS datasets as the input
of CNN to enhance the accuracy of intrusion detection.
Salama et al. [30] proposed a method for the anomaly
intrusion detection scheme using Restricted Bolzman Ma-
chine (RBM)-based Deep Believe Network (DBN). In their
work, DBN is used as a feature reduction method and
SVM is utilized as a classifier. Kim et al. [31] showed that
Recurrent Neural Network (RNN) and Long Short Term
Memory (LSTM) were effective for IDS problems. Kwon
et al. [14] compared the accuracy of some popular deep
learning models including RBN, RNN, AutoEncoder, and
DBN in intrusion detection. They also proposed a Fully
Connected Model (FCM) for intrusion detection. In FCM,
the number of neurons in each layer is equal to the number
of data features. Rodda [15] showed that the multi-layer
perceptron is better than radial basis function networks for
designing network intrusion detection system. Moreover,
Benlenko [32] presented generative adversarial artificial
neural networks to detect security intrusions in the large-
scale networks of cyber Internet of Thing devices.

Overall, deep learning has often been used to extract
meaningful features from intrusion data sets. In this paper,
we propose a new application of deep learning to IDS.
More specifically, we use a generative model (i.e., GAN)
to generate synthesized attacks to handle the imbalanced
problem of IDS datasets. The detailed description of our
method will be presented in Section IV.

2. Handling Imbalanced Data in Machine Learning

Imbalanced data typically refers to a problem where the
number of observations belonging to one class is signifi-
cantly lower than those belonging to the other classes [33].
In this situation, the predictive model developed using
conventional machine learning algorithms could be biased
and inaccurate [33]. The reason is that machine learning
algorithms are usually designed to improve the accuracy
by reducing the error. Thus, they do not take into account
the class distribution/proportion or the balance of classes. In
order to improve the accuracy of machine learning in imbal-
anced datasets, several techniques have been proposed [33].
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Perhaps, the most popular technique for dealing with
imbalanced data is sampling. Sampling techniques usually
consider the ratio of sample classes. Random undersam-
pling [34] aims to downsize the majority classes by re-
moving observations until the dataset is balanced. Random
oversampling [34] decreases the level of class imbalance
by copying the minority class until the classes have equal
samples. The downsize of oversampling is the increase
in the risk of overfitting [34]. Synthetic Minority Over-
sampling Technique (SMOTE) [35] generates the samples
of the minor class by extrapolating and interpolating minor
samples from the neighborhood ones. An extension of
SMOTE is SMOTE-SVM [36] that synthesizes samples
located in the borderline between classes by only generating
the samples for the support vectors of a SVM model trained
on the original dataset.

BalanceCascade [27] combines a sampling technique
with a classifier to discover the distribution of the majority
and minority class. This method develops an ensemble
model of classifiers to systematically select the major
samples to remove. A number of sub-datasets of balanced
rate between minority and majority are created by under-
sampling the major class. Next, an ensemble of classifiers
are trained on these sub-datasets. Finally, the samples in the
major class will be removed if they are classified correctly
by the ensemble model.

Some other techniques use the distance between data
samples to remove the noisy or borderline samples of each
class. Tomek link [37] removes samples from the major
class that are close to the minor region in order to return a
dataset that presents a better separation between the two
classes. TomekSMOTE is a hybrid technique that uses
SMOTE to oversample the minor class and apply Tomek
to remove the noisy samples generated by SMOTE.

Although TomekSMOTE and SMOTE-SVM have been
popularly used and their effectiveness has been well-
evidenced [33, 37, 38], the shortcoming of these methods is
that the distribution of the original data can be lost. In other
words, the generated data samples may have a very different
distribution from the original data. In this paper, we propose
a method for oversampling data by using a generative
deep learning model. We hypothesize that the synthesized
data by the generative model will preserve the distribution
of the original data better than the traditional sampling
techniques. Subsequently, the augmented dataset of deep
learning method will help to improve the accuracy of clas-
sification algorithms. In [39], the author also synthesized
the data samples to improve the quality of IDS datasets by
using a variety of Generative Adversarial Network (GAN).
Their model is called SynGAN. which uses an extension of
GAN, i.e., Wasserstein GAN (WGAN) [40] to synthesize

data samples. The difference of SynGAN compared with
our model is that SynGAN is operated in an unsupervised
manner, and thus, it does not use the label information for
training. Conversely, our proposed method, i.e., ACGAN-
SVM uses the label information during the training process,
thereby improving the accuracy of IDS.

III. BACKGROUND

This section describes in detail Generative Adversarial
Network and its extension Auxiliary Classifier Generative
Adversarial Network.

1. Generative Adversarial Network

Generative Adversarial Network (GAN) [41] is a recent
deep learning method for generating synthesized data. GAN
composes of two neuron networks: a Generator (G) and a
Discriminator (D). The input of the generator is noise and it
outputs a generated sample. The input of the discriminator
includes two sources: a generated sample of the generator
and a training data sample. The discriminator attempts to
differentiate between a real data sample and a fake sample
generated by the generator. These two networks are trained
continuously, where the generator learns to generate more
realistic samples, and the discriminator aims to separate the
generated data from the real data. Usually, the competition
between two networks will result in the generated samples
being difficult to distinguish from the real samples.

Let 𝑧 (random noise) be the input of G and its output
is a synthesized sample 𝑋 𝑓 𝑎𝑘𝑒 = 𝐺 (𝑧). D takes as input
either a real (𝑥) or a fake sample (𝐺 (𝑧)), and its output is
a value that presents the probability of being real of the
input sample. In other words, D is trained to increase the
probability of the real data and to decrease the probability
of the generated data by maximizing (1). Conversely, G is
trained to increase the probability of the fake data being
rated as the real data by minimizing the second term in
this equation.

𝐿 = 𝐸 [log 𝐷 (𝑥)] + 𝐸 [log(1 − 𝐷 (𝐺 (𝑧)))] . (1)

One appealing property of GAN is that it is a fully
unsupervised approach. Therefore, we can train a GAN in
an unsupervised manner and then use its generator and
discriminator as feature extractors for supervised tasks.
However, GAN is more unstable to train because we have
to train two networks in an opposite way from a single
back-propagation. Subsequently, the resulting generator may
produce nonsensical outputs.
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Algorithm 1: Algorithm of training G.
1 Inputs: Random noise 𝑧, Class label 𝑐 .
2 Outputs: Trained generator 𝐺.
3 begin
4 Set input value of 𝐺 is 𝑧 concatenate 𝑐;
5 Train 𝐺 by maximizing (𝐿𝐶 − 𝐿𝑆);
6 return 𝐺.
7 end

Algorithm 2: Algorithm of training D.

1 Inputs: Real data sample from original dataset 𝑋 ,
Class label 𝑐.

2 Outputs: Trained discriminator 𝐷.
3 begin
4 Generate random noise 𝑧;
5 𝑋 ′ = 𝐺 (𝑧, 𝑐);
6 Set input value of 𝐷 is 𝑋 or 𝑋 ′ concatenate 𝑐 ;
7 Train 𝐷 by maximizing (𝐿𝐶 + 𝐿𝑆);
8 return 𝐷.
9 end

2. Auxiliary Classifier Generative Adversarial Network

Auxiliary Classifier Generative Adversarial Network
(ACGAN) [42] is an extension of GAN by using the class
label in the training process. ACGAN also includes two
neural networks operating in a contrary way: a Generator
(𝐺) and a Discriminator (𝐷). The input of 𝐺 in ACGAN
includes a random noise 𝑧 and a class label 𝑐 instead of
only random noise 𝑧 as in the GAN model. Therefore, the
synthesized sample of 𝐺 in ACGAN is 𝑋 𝑓 𝑎𝑘𝑒 = 𝐺 (𝑐, 𝑧),
instead of 𝑋 𝑓 𝑎𝑘𝑒 = 𝐺 (𝑧). In other words, ACGAN can gen-
erate data samples for a desired class label. The objective
function of ACGAN has two parts (in (2) and (3)): the log-
likelihood of the correct data, 𝐿𝑆 , and the log-likelihood of
the correct class, 𝐿𝐶 . 𝐷 is trained to maximize 𝐿𝐶 + 𝐿𝑆

and 𝐺 is trained to maximize 𝐿𝐶 − 𝐿𝑆 .

𝐿𝑆 = 𝐸 [log 𝐷 (𝑥)] + 𝐸 [log(1 − 𝐷 (𝐺 (𝑧)))] . (2)

𝐿𝐶 = 𝐸 [log 𝐷 (𝑥, 𝑐)] + 𝐸 [log(1 − 𝐷 (𝐺 (𝑧, 𝑐)))] . (3)

Algorithms 1 and 2 describe the process of training
𝐺 and 𝐷 networks in the ACGAN model. 𝐺 is trained
to generate fake samples that are similar to real samples.
Conversely, the objective of training 𝐷 is to increase the
difference between a real sample and a fake sample of the
same class. These two networks are trained simultaneously
until achieving a Nash equilibrium [43].

Similar to GAN, the training process in ACGAN using
gradient descent algorithm may not be converged. Since

Figure 1. Process of using ACGAN to create the augmented datatset.

two cost functions are updated independently, there is no
guarantee to enhance the training error for both neural
networks in ACGAN [43]. In this paper, we investigated
various structures of 𝐺 and 𝐷 to determine the structure
that achieve good performance when trained on the network
traffic datasets.

IV. METHODS

This section describes two approaches for generating
synthesized attacks in IDS. The first approach uses an
ACGAN network to generate the synthesized data. The
second approach uses a SVM model to remove the noisy
samples that is generated when using the ACGAN model.

1. Generating Synthesized Attacks using ACGAN

The flow of using ACGAN to create augmented dataset
is described in Fig. 1. First, the original dataset is divided
into two parts: a training set and a testing set. The ACGAN
model is trained on the training set. After training, the
generator (𝐺) is used to generate synthesized data samples
for the minor (attack) classes. The synthesized samples are
then combined with the training dataset to form the aug-
mented dataset. Three supervised classification algorithms
(i.e., SVM, DT, and RF) are then trained on the augmented
dataset. Finally, the supervised classification algorithms
(after being trained on the augmented dataset) are tested
on the testing set.

2. Generating Synthesized Attacks using
ACGAN-SVM

The second method for generating artificial data is
ACGAN-SVM. ACGAN-SVM attempts to produce samples
that are near the borderline area defined by the SVM
model. However, unlike SMOTE-SVM that produces data
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samples by extrapolating or interpolating from the original
samples [36], ACGAN-SVM uses a generative model to
generate new samples. We hypothesize that the samples
generated by ACGAN-SVM will preserve the underlying
distribution of the original dataset better than SMOTE-
SVM. Subsequently, the augmented dataset of ACGAN-
SVM will improve the performance of classification algo-
rithms.

Algorithm 3: ACGAN-SVM algorithm for over-
sampling.

1 Inputs: original training set 𝑋 , generated data
samples 𝑋 ′, number of nearest neighbors 𝑚, Euclid
distance between vector 𝑥 and vector 𝑦 d(𝑥,𝑦).

2 Outputs: new sampling set 𝑋𝑛𝑒𝑤 .
3 begin
4 Training ACGAN on 𝑋 to have trained

Generator 𝐺;
5 Set 𝑋 ′ contains minority samples generated by

𝐺 network;
6 Train SVM model on 𝑋 to have the set of

support vectors 𝑆𝑉𝑠;
7 foreach 𝑠𝑣𝑖 ∈ 𝑆𝑉𝑠 do
8 Compute 𝑚 nearest neighbors in 𝑋;
9 Compute 𝑑𝑖 that is average of Euclid

distance from 𝑚 nearest neighbors to 𝑠𝑣𝑖;
10 end
11 foreach 𝑥 𝑗 ∈ 𝑋 ′ do
12 if d(𝑥 𝑗 , 𝑠𝑣𝑖) ≤ 𝑑𝑖 then
13 𝑋𝑛𝑒𝑤 = 𝑋 ∪ {𝑥 𝑗 };
14 end
15 end
16 return 𝑋𝑛𝑒𝑤 .
17 end

Algorithm 3 presents the detailed description of using
ACGAN-SVM for generating synthesized data. The tech-
nique is divided into two main phases, i.e., generation and
selection. In the generation phase, the ACGAN network is
trained on the training dataset 𝑋 . After that, the generator
network (𝐺) of ACGAN is used to generate synthesized
samples 𝑋 ′. In the selection phase, the SVM model is
trained on the training dataset 𝑋 and the set of support
vectors of this model is called 𝑆𝑉𝑠 . For each support vector
𝑠𝑣𝑖 ⊂ 𝑆𝑉𝑠 , we calculate the average Euclidean distance 𝑑𝑖 of
𝑚 nearest neighbor samples of 𝑠𝑣𝑖 in 𝑋 to 𝑠𝑣𝑖 . If a generated
sample 𝑥 𝑗 ⊂ 𝑋 ′ has the distance to 𝑠𝑣𝑖 smaller than 𝑑𝑖 , this
sample is kept. Conversely, if the distance from 𝑥𝑖 to 𝑠𝑣𝑖

is greater than 𝑑𝑖 , the sample is removed. The algorithm
will stop when the augmented dataset is balanced for every
class. The augmented dataset is then used to train three

classification algorithms as in ACGAN.

V. EXPERIMENTAL SETTINGS

This section presents the datasets used in the experiments
and the parameter’s setting for the tested algorithms.

1. Datasets

In order to test the effectiveness of the proposed method
we used three well-known network intrusion detection
datasets, i.e., NSL-KDD, UNSW-NB15, CICIDS2017 and
one our own dataset, i.e., RAWDATA.

NSL-KDD is an IDS dataset [19] which is used to
solve some intrinsic drawbacks of the KDD’99 dataset. The
NSL-KDD dataset contains 148517 records divided into
the training set (125973 data samples) and the testing set
(22544 data samples). Each sample has 41 features and
is labeled either as a type of attack or normal data. The
training set contains 24 attack types, and the testing set
includes 14 more types of attack. The simulated attack
samples belong to one of four categories: DoS, R2L, U2R,
and Probing.

UNSW-NB15 is created by utilizing the synthetic envi-
ronment in the Cyber Range Lab of the Australian Center
of Cyber Security (ACCS) [20]. The number of records in
the training set and the testing set are 175341 and 82332,
respectively. The data samples are labeled as normal or one
of nine attack types. Nine categories of attacks includes
Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Re-
connaissance, Shellcode and Worms. Each data sample has
49 features which were generated by using Argus, Bro-IDS
tools and twelve other algorithms to analyze characteristics
of network packets.

CICIDS2017 is an IDS dataset developed by Canadian
Institute for Cybersecurity. Data samples in CICIDS2017
include benign samples and some recent common attacks
such as Brute Force FTP, Brute Force SSH, DoS, Heart-
bleed, Port Scan, Infiltration, Botnet and [21]. We pre-
possessed data by dropping some attributes that do not
represent the characteristic of a network flow. The removed
attributes include FlowID, Source IP address, Destination
IP address and time stamp. The resulting network flow is
represented by 78 attributes. We also removed Heartbleed
and Infiltration attacks from the dataset since they have too
few samples for any algorithm to learn1. The final dataset
used in our experiments has four categories of attacks:
DoS, Brute Force, Web Attack, and Botnet and is randomly
divided into the training dataset (266028 records) and the
testing dataset (186213 records).

1Infiltration and Heartbleed have only 3 and 1 samples, respectively.
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RAWDATA is an IDS dataset which we collected at
our Computer Network Lab at Le Quy Don Technical
University. First, we set up a network environment and
captured three kinds of traffic including the normal traffic,
the Structured Query Language (SQL) injection traffic, and
the Cross-Site Scripting (XSS) traffic using the Winpcap
library [44]. We used the Sqlmap tool [45] to simulate the
SQL injection traffic and the XSS attack traffic was gener-
ated manually. Then, the collected packets were extracted by
the Scapy library [46] in the Python language. Each packet
was extracted by 5002 raw bytes as features. Finally, we
labeled the normal traffic as 0, the SQL injection traffic as
1, and the XSS traffic as 2. The final dataset was randomly
divided into the training set (80% number of samples) and a
testing set (20% number of samples). The processed dataset
is available for download3.

2. Parameters Settings

Since it is often difficult to guarantee a good convergence
when training ACGAN, we have conducted a number of
experiments to tune the hyper-parameters of ACGAN. The
best values of hyper-parameters in ACGAN are calibrated
and presented in Table I. For ACGAN-SVM, we used the
same structure as ACGAN in Table I. Moreover, the SVM
model with the rbf kernel and gama parameter of 0.01
was trained on the original data. For both ACGAN and
ACGAN-SVM, we used the ReLu activation function for
all hidden layers except the last layer where we used the
Sigmoid activation function. The Adam optimization [47]
with the learning rate of 10−3 was used to train 𝐺 and 𝐷

networks in ACGAN and ACGAN-SVM.

TABLE I
PARAMETERS SELECTION FOR 𝐺 AND 𝐷 NETWORKS IN ACGAN AND

ACGAN-SVM.

Dataset Number
of layers

Number
of Neurons

Batch
size

NSL-KDD 5 160 128
UNSW-NB15 5 160 64
CICIDS2017 5 160 100
RAWDATA 5 160 50

After using ACGAN and ACGAN-SVM to generate the
synthesized data, three popular classification algorithms,
i.e., SVM, DT, and RF are trained on the augmented
datasets. We used the implementation of these algorithms
in a popular machine learning packet in Python, Scikit
learn [48]. In order to lessen the impact of experimental
parameters to the performance of the classifiers, we used
the grid search technique for each algorithm. The range of

2This number is a popular size of packet for our data chosen by a
statistical method.

3https://github.com/vuthily/data/rawdata.

values for the important parameters tuned by the grid search
technique are presented in Table II.

TABLE II
PARAMETER’S RANGE OF THE GRID SEARCH FOR CLASSIFIERS.

Classifiers Parameters
SVM 𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑟𝑏 𝑓 ; 𝑔𝑎𝑚𝑎 = 0.001, 0.01, 0.1, 1.0
DT 𝑚𝑎𝑥 − 𝑑𝑒𝑝𝑡ℎ = 5, 6, 7, 8, 9, 10, 50, 100
RF 𝑛 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 20, 40, 80, 150

For each dataset, we conducted two sets of experiments.
In the first set, the traffic datasets were adapted to form
two-class classification problems. In other words, the class
label has two values: “Normal”(“Benign”) or “Attack”. In
the second set, the datasets were processed to form multi-
class classification problems. In this case, NSL-KDD and
CICIDS2017 datasets have five classes, UNSW-NB15 has
ten classes, and RAWDATA has three classes. The number
of samples in each class for binary and multiclass problems
are described in Table III. It can be seen that these datasets
are mostly balanced in the binary classification problem.
However, in the multiclass classification problem, both
datasets are highly imbalanced. The number of samples
of some classes such as U2L in NSL-KDD and Worms,
Shellcode in UNSW-NB15, and Brute Force, Botnet in
CICIDS2017, SQL injection in RAWDATA are much less
than the number of samples of normal class and some other
attack classes.

We compared the performance of the classification al-
gorithms when they are trained on the augmented datasets
of WGAN [40], ACGAN [42], and ACGAN-SVM with the
version trained on the original data and the synthesized
data of three traditional sampling approaches: SMOTE-
SVM [36], BalanceCasscade [27], TomekSMOTE [37]. The
source code of all tested methods are available for down-
load4. All techniques were implemented in Python, Scikit-
learn machine learning library [48] and Tensorflow deep
learning framework [49]. Moreover, the same computing
platform (Operating system: Ubuntu 16.04 (64 bit), Intel(R)
Core(TM) i5-5200U CPU, 2 cores and 4GB RAM memory)
was used in every experiment in this paper.

3. Evaluation Metrics

Three popular performance metrics in a classification
problem were used to measure the effectiveness of our
method. The reported metrics include precision score, recall
score, and F1 score [50]. Equation (4) and (5) present
precision and recall score for one class. The final values
of these metrics are the average over all classes.

4https://github.com/vuthily/acgansvm.
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TABLE III
NUMBER OF CLASS SAMPLES IN EACH TRAINING DATASET.

NSL-KDD UNSW-NB15 CICIDS2017 RAWDATA
Classes Number Classes Number Classes Number Classes Number
Normal 67373 Normal 37000 Benign 219110 Benign 6503
Attack 58630 Attack 45332 Attack 46928 Attack 1528
DoS 45927 Generic 18871 DoS 29447 SQL injection 526
U2L 52 Exploits 11132 Port Scan 15893 XSS 1002

R2L 995 Fuzzers 6062 Brute
Force 1392

Probing 11656 DoS 4089 Botnet 196
Reconna-
issance 3496

Analysis 677
Backdoor 583
Shellcode 378

Worms 44

TABLE IV
RESULT OF DT, RF, AND SVM ON TWO-CLASS CLASSIFICATION FOR NSL-KDD, UNSW-NB15, CICIDS2017, AND RAWDATA DATASETS.
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DT

ORIGINAL 0.92 0.90 0.91 0.84 0.74 0.80 0.95 0.95 0.94 0.97 0.95 0.96
SOMTE-SVM 0.91 0.90 0.90 0.82 0.72 0.81 0.93 0.89 0.90 0.97 0.98 0.97
BalanceCascade 0.92 0.91 0.92 0.81 0.70 0.82 0.94 0.92 0.93 0.96 0.96 0.95
TomekSMOTE 0.92 0.92 0.92 0.81 0.74 0.83 0.94 0.92 0.93 0.97 0.95 0.96
WGAN 0.92 0.90 0.90 0.80 0.78 0.76 0.93 0.92 0.92 0.97 0.98 0.97
ACGAN 0.91 0.91 0.91 0.81 0.81 0.82 0.95 0.96 0.95 0.98 0.98 0.98
ACGAN-SVM 0.93 0.93 0.92 0.82 0.84 0.84 0.97 0.98 0.96 0.99 0.99 0.99

RF

ORIGINAL 0.87 0.83 0.83 0.91 0.88 0.88 0.98 0.98 0.98 0.97 0.97 0.97
SMOTE-SVM 0.87 0.83 0.83 0.88 0.82 0.83 0.99 0.99 0.99 0.98 0.97 0.98
BalanceCascade 0.87 0.83 0.83 0.91 0.89 0.89 0.99 0.99 0.99 0.97 0.97 0.97
TomekSMOTE 0.86 0.84 0.84 0.91 0.90 0.89 0.99 0.99 0.99 0.97 0.96 0.97
WGAN 0.85 0.86 0.84 0.89 0.87 0.88 0.97 0.95 0.95 0.98 0.98 0.98
ACGAN 0.87 0.84 0.84 0.91 0.88 0.89 0.99 0.99 0.98 0.99 0.97 0.98
ACGAN-SVM 0.87 0.86 0.85 0.92 0.90 0.89 0.99 0.99 0.99 0.99 0.99 0.99

SVM

ORIGINAL 0.85 0.82 0.83 0.87 0.87 0.87 0.96 0.96 0.96 0.96 0.95 0.96
SMOTE-SVM 0.85 0.83 0.83 0.84 0.76 0.77 0.93 0.91 0.91 0.97 0.97 0.97
BalanceCascade 0.85 0.83 0.83 0.84 0.76 0.76 0.92 0.90 0.91 0.97 0.96 0.97
TomekSMOTE 0.85 0.82 0.83 0.85 0.77 0.78 0.92 0.90 0.91 0. 0. 0.
WGAN 0.86 0.84 0.85 0.85 0.83 0.85 0.98 0.96 0.96 0.97 0.98 0.97
ACGAN 0.85 0.82 0.83 0.87 0.85 0.87 0.97 0.98 0.97 0.97 0.99 0.97
ACGAN-SVM 0.85 0.83 0.84 0.87 0.86 0.88 0.98 0.97 0.98 0.98 0.97 0.98

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
. (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
. (5)

In (4) and (5), TP and FP are the number of correct
and incorrect predicted samples for class 𝑖, respectively,
and FN is the number of incorrect predicted samples of the
rest of the classes. Although, precision and recall are very
intuitive and easy to implement, they make no distinction
between classes. Therefore, they are not suitable to measure
a classifier performance in imbalanced datasets.

F1-score (in (6)) aims to overcome the limitation of
precision and recall score. F1-score is calculated as the

mean [50] of precision and recall. F1-score is often con-
sidered as a reliable metric to evaluate the performance of
classification algorithms in imbalanced datasets. Therefore,
we will use this metric for comparing various techniques in
this paper. Precision and recall are used as reference only.

F1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (6)

VI. RESULTS AND DISCUSSION

This section compares the accuracy of SVM, DT, and
RF when they are trained on the augmented datasets of
WGAN, ACGAN, and ACGAN-SVM with those trained
on the original dataset and the datasets generated by
three traditional sampling approaches: SMOTE-SVM [36],

15



Research and Development on Information and Communication Technology

BalanceCascade [27], TomekSMOTE [37]. After that, the
computational time for generating the augmented dataset of
the sampling approaches is analyzed. Finally, we analyze
the quality of the synthesized data and visualize the bor-
derline samples of ACGAN, ACGAN-SVM, and the other
oversampling techniques.

1. Accuracy of classification algorithms with
synthesized attacks

The accuracy of classification algorithms on the binary
and muticlass classification problems is presented in this
subsection. Table IV presents the precision, recall, and
F1-score of three classifiers on the binary classification
problem. In this table and Table V, the best value in each
configuration is printed bold face. It can be observed that
all techniques for handling imbalanced data only slightly
improve the accuracy of classifiers. The F1-score of SVM,
DT and RF when trained on the augmented datasets of
ACGAN, ACGAN-SVM and three traditional approaches
is only slightly greater than that trained on the original
version. The reason could be that, on the binary clas-
sification problem, the training data is mostly balanced.
Therefore, using techniques for addressing imbalanced data
did not help classification algorithms achieve a significant
improvement.

Among the tested sampling techniques, we can see that
ACGAN-SVM outperforms all others. The F1-score of the
classifiers trained on the datasets of ACGAN-SVM is often
higher than those trained on the datasets of the others.
Moreover, the margin of the improvement of ACGAN-SVM
over the original version is always greater than the margin
of the improvement of the other sampling techniques.
For example, using the augmented dataset of ACGAN-
SVM for training, the F1-scores of DT, RF, and SVM
are increased from 0.80, 0.88, and 0.87 to 0.84, 0.89,
and 0.88 on UNSW-NB15 compared to using the original
datatset. Another deep neural network based technique, i.e.,
WGAN, also provides the augmented dataset with the high
accuracy of classifiers. However, it is still lower than those
of the ACGAN based models. The reason is that training
WGAN does not use the label of data as training the
ACGAN models. For three traditional sampling techniques,
the table shows that TomekSMOTE is often better than
BalanceCascade and SOMTE-SVM. However, the accuracy
of the classifiers trained on the datasets of TomekSMOTE
is mostly equal to the accuracy of the classifiers trained on
the original data.

Table V presents the F1-score, precision and recall of DT,
RF, and SVM on the multiclass classification problem. It
can be seen that the accuracy of the classifiers is improved
considerably when trained on the datasets generated by

all sampling techniques. Among three traditional sam-
pling techniques, TomekSMOTE still achieves better results
than SMOTE-SVM and BalanceCascade. Specifically, in
UNSW-NB15, the F1-score of the classifiers that trained
on the datasets of TomekSMOTE is often much better
than that trained on the original dataset. Specifically, F1-
scores of DT, RF, and SVM are improved from 0.42, 0.41,
and 0.41 to 0.60, 0.72, and 0.60 when trained with the
augmented datasets of TomekSMOTE compared to those
trained on the original dataset. On three other datasets, i.e.,
NSL-KDD, CICIDS2017, and RAWDATA, the F1 scores
of classifiers trained on the augmented dataset generated
by TomekSMOTE are mostly equal to those trained on the
original data.

The most impressive results in Table V are obtained
by our proposed methods. The table shows that ACGAN
and ACGAN-SVM are often considerably better than other
techniques. Compared to training on the original dataset,
the F1-scores of DT, RF, and SVM on UNSW-NB15 with
ACGAN are increased from 0.42, 0.41, and 0.41 to 0.63,
0.73, and 0.62, respectively. The F1-score of ACGAN-
SVM is often the highest value among all tested tech-
niques. The improvement margin of ACGAN-SVM over the
original version is often greater than that of ACGAN and
TomekSMOTE. For example, the F1-scores of DT, RF, and
SVM on UNSW-NB15 with ACGAN-SVM are increased
to 0.67, 0.74, and 0.63 compared to those of the original
dataset. On the CICIDS2017 dataset, only ACGAN-SVM
achieves better performance than the original data. Addi-
tionally, on the RAWDATA, because the imbalance rate
is relatively low, the classification accuracy of handling
imbalance techniques is slightly improved compared with
those of the original data.

The results in Table V give evidence for the benefit of
using ACGAN and ACGAN-SVM to improve the machine
learning performance in IDSs when the training datasets
are highly imbalanced. In other words, using ACGAN and
ACGAN-SVM to generate synthesized attacks enhances
the quality of the IDS training datasets. This subsequently
improves the effectiveness of the machine learning algo-
rithms when they are trained on the augmented datasets
of ACGAN and ACGAN-SVM. The reason for the better
performance of ACGAN and ACGAN-SVM compared to
others could be that the synthesized samples of the tradi-
tional sampling techniques may not fully follow the original
data distribution and that this problem is mitigated in the
generative models (see Subsection VI.3). Moreover, using
SVM to remove unimportant samples which do not con-
tribute much to the classification algorithms helps ACGAN-
SVM to further improve the performance of classifiers over
using ACGAN.
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TABLE V
RESULT OF DT, RF, AND SVM ON MULTICLASS CLASSIFICATION FOR NSL-KDD, UNSW-NB15, CICIDS2017, AND RAWDATA DATASETS .
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DT

ORIGINAL 0.87 0.83 0.82 0.51 0.50 0.42 0.97 0.97 0.97 0.97 0.95 0.95
SMOTE-SVM 0.85 0.80 0.82 0.49 0.47 0.46 0.92 0.85 0.87 0.98 0.95 0.96
BalanceCascade 0.80 0.81 0.79 0.63 0.61 0.58 0.95 0.94 0.94 0.97 0.95 0.96
TomekSMOTE 0.86 0.82 0.82 0.65 0.62 0.60 0.94 0.93 0.93 0.95 0.97 0.96
WGAN 0.83 0.80 0.78 0.64 0.60 0.61 0.96 0.95 0.94 0.96 0.96 0.96
ACGAN 0.89 0.85 0.83 0.66 0.61 0.63 0.98 0.97 0.97 0.96 0.96 0.96
ACGAN-SVM 0.90 0.84 0.84 0.67 0.63 0.67 0.98 0.98 0.98 0.97 0.97 0.97

RF

ORIGINAL 0.81 0.76 0.72 0.46 0.54 0.41 0.99 0.99 0.98 0.97 0.96 0.96
SMOTE-SVM 0.82 0.78 0.74 0.74 0.70 0.71 0.99 0.95 0.99 0.98 0.98 0.98
BalanceCascade 0.83 0.79 0.77 0.82 0.67 0.70 0.98 0.98 0.98 0.97 0.98 0.97
TomekSMOTE 0.88 0.80 0.77 0.84 0.69 0.72 0.99 0.99 0.99 0.97 0.98 0.97
WGAN 0.81 0.76 0.84 0.69 0.70 0.72 0.96 0.97 0.96 0.98 0.98 0.98
ACGAN 0.84 0.79 0.78 0.69 0.72 0.73 0.99 0.99 0.99 0.98 0.97 0.98
ACGAN-SVM 0.84 0.82 0.80 0.83 0.76 0.74 0.99 0.99 0.99 0.99 0.98 0.98

SVM

ORIGINAL 0.67 0.74 0.69 0.46 0.55 0.41 0.93 0.92 0.92 0.94 0.94 0.94
SMOTE-SVM 0.81 0.77 0.75 0.65 0.52 0.54 0.92 0.84 0.86 0.96 0.94 0.95
BalanceCascade 0.70 0.69 0.63 0.75 0.61 0.59 0.93 0.81 0.85 0.95 0.94 0.95
TomekSMOTE 0.81 0.78 0.68 0.71 0.63 0.60 0.94 0.85 0.88 0.94 0.95 0.95
WGAN 0.83 0.80 0.84 0.75 0.63 0.62 0.94 0.93 0.92 0.96 0.95 0.96
ACGAN 0.81 0.74 0.76 0.76 0.65 0.62 0.94 0.94 0.93 0.96 0.96 0.96
ACGAN-SVM 0.83 0.79 0.78 0.78 0.66 0.63 0.94 0.95 0.95 0.96 0.96 0.96

TABLE VI
COMPUTATIONAL TIME (IN SECONDS) TO SYNTHESIZE DATA OF SAMPLING TECHNIQUES.

Methods NSL-KDD UNSW-NB15 CICIDS2017 RAWDATA
b-classes m-classes b-classes m-classes b-classes m-classes b-classes m-classes

SMOTE-SVM 280 2266 645 4026 3310 3439 312 155
BalanceCascade 256 5 33 3 413 4 232 137
TomekSMOTE 386 1651 88 503 1251 5946 342 901

WGAN 5700 5287 6230 5893 5902 6101 6003 6101
ACGAN 7200 6884 7508 6280 6285 6348 5974 6048

ACGAN-SVM 7935 7725 8276 7198 7304 7122 7502 7107

2. Computational Time of Sampling Approaches

This subsection compares the computational time of the
sampling methods. The computational time in seconds of
five sampling techniques to generate the augmented datasets
is showed in Table VI. It can be seen that the computational
time of BalanceCascade and TomekSMOTE are relatively
small while these values of others are often much higher.
The running time of ACGAN-SVM is always greater than
the time of all other approaches. The reason is that this
method needs to train both the ACGAN model and the
SVM model before it is used to create the synthesize data.
However, the sampling phase can be considered as the pre-
processing data step. When applying a machine learning
model to a real world problem like IDS, the computational
time for prediction is often the most desirable and the
sampling step does not affect the prediction time of the
classifiers.
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Figure 2. Parzen window log-likelihood of test set.
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Figure 3. Illustration of oversampling techniques.

3. Analysis of Generated Data

This subsection qualitatively evaluates the generated data
of SMOTE-SVM and ACGAN by measuring whether this

data converges to the true data distribution. This exper-
iment is applied to assess generated data techniques by
oversampling techniques. Thus, we just assess two sampling
techniques such as SMOTE-SVM and ACGAN. We applied
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the procedure of Goodfellow et al. [41] to assess the quality
of generative models. For each dataset, we use a Gaussian
Parzen window to fit datasets. Then, the log-likelihood
of each generative model under the true distribution is
reported. Experimental results are shown in Fig. 2 where a
greater value presents a better model.

It can be seen that the log-likelihood of ACGAN is
always higher than the value of SMOTE-SVM on three
tested datasets. The reason is that ACGAN are trained
to learn the true distribution of the original data while
SMOTE-SVM does not do so. The figure evidences that
the generated data of ACGAN correlates more strongly to
the original data than the data of SMOTE-SVM. This result
supports for the better performance of machine learning
algorithms when they are trained on the augmented datasets
of ACGAN compared to those trained on the augmented
datasets of SMOTE-SVM.

4. Borderline Samples Visualization

This subsection visualizes the data synthesized by AC-
GAN, ACGAN-SVM, and other sampling techniques. We
created a random dataset of 5000 samples with two features.
The dataset includes three classes: two minor classes and
one major class. The ratio of samples in each class is
0.05 : 0.10 : 0.85. This dataset is visualized on the
top left of Fig. 3. In this figure, the red dots, blue dots,
and green dots are the data samples of the major class,
the first and the second minor classes, respectively. Using
ACGAN, we generated 3966 samples for the first minor
class and 3718 samples for the second minor class. To-
tally, 7684 samples of two minor classes were generated
to form a balanced dataset. Similarly, SMOTE-SVM and
ACGAN-SVM were used to generate 7684 samples for
two minor classes. BalanceCascade reduced the number of
samples of the major class to 524 and oversampled the
most minor class to 524 to balance with the middle class.
For TomekSMOTE, we oversampled two minor classes to
have 4163 and 4158 samples, respectively. After that, 117
samples in the major class is reduced to form the augmented
dataset. The generated datasets of all sampling techniques
are presented in Fig. 3.

It can be seen from Fig. 3 that BalanceCascade is only
the technique that reduces the number of data samples.
All other techniques generate synthesized data from the
original data. Among four oversampling techniques, we
can see that both ACGAN and TomekSMOTE generate
many samples that are in the middle area of the minor
classes. Conversely, SMOTE-SVM and ACGAN-SVM only
generate the samples that are near the borderline between
classes. In the context of sampling techniques, the samples
that are near the borderline between classes often contribute

more significantly to the effectiveness of the classifiers than
the samples located in the center area.

Moreover, Fig. 3 also shows that TomekSMOTE and
ACGAN sometimes create the samples that are overlapped
with the samples of other classes. Subsequently, these
samples will be difficult for the classifiers to separate
correctly. Conversely, the generated samples of SMOTE-
SVM and ACGAN-SVM are not overlapped with other
classes. This evidences that using SVM helps to remove
the noisy samples generated by ACGAN and SMOTE. This
provides partial explanation for the better performance of
ACGAN-SVM compared to ACGAN and others. Moreover,
the superior performance of ACGAN-SVM and ACGAN
to other sampling techniques could be that the generated
samples of ACGAN and ACGAN-SVM are better follow
the original distribution than the traditional techniques as
analyzed in Subsection VI.3.

Overall, the results in this section show that Generative
Adversarial Networks can generate the meaningful samples
for imbalanced IDS datasets. The classification algorithms
that are trained on datasets augmented by ACGAN and par-
ticularly ACGAN-SVM are often better than those trained
on the original dataset and the datasets obtained by using
some popular sampling techniques.

VII. SUMMARY

In this paper, we proposed a novel approach based on
generative adversarial networks for addressing imbalanced
datasets in IDS. Specifically, we proposed two techniques
based on ACGAN and ACGAN-SVM to generate samples
for the attack classes in IDS. The augmented datasets of
ACGAN and ACGAN-SVM are then used as the training
dataset for three popular classification algorithms, SVM,
DT, and RF. The experiments were conducted on three
common IDS datasets: NSL-KDD, UNSW-NB15, and CI-
CIDS2017 and one our own dataset, i.e., RAWDATA.
The results show that the augmented datasets of ACGAN
and ACGAN-SVM help machine learning to enhance ac-
curacy on the imbalanced datasets although the training
processes of ACGAN and ACGAN-SVM are often slower
than the traditional sampling approaches. We analysed the
quality of the generated data of ACGAN and SMOTE-
SVM and visualized the borderline synthesized samples of
five tested sampling techniques. The visualization partially
explains the better performance of ACGAN and particularly
ACGAN-SVM compared to others.

There are a number of research areas for future work
that arise from this paper. First, we would like to examine
the effectiveness of other deep learning generative models
such as auto-encoder in generating the synthesized attacks
for IDS. Second, the visualization technique has shed some
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light on the superior performance of ACGAN-SVM to
other sampling techniques. However, this technique did
not completely explain why ACGAN is also often better
than SMOTE-SVM. We hypothesize that the generated data
of ACGAN is better follow the original distribution than
SMOTE-SVM. In the future, we will study the method to
quantify the distribution of the synthesized samples of these
sampling techniques [41]. Last but not least, we want to
extend this approach to other problems in security and in
other areas such as anomaly detection.
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