
Research and Development on Information and Communication Technology

CAM-D: A Description Method for
Multi-cloud Marketplace Application
Hoang-Long Huynh1, Duc-Huu Nguyen1, Trong-Vinh Le2, Quyet-Thang Huynh1

1 Hanoi University of Science and Technology, Hanoi, Vietnam
2 University of Science, Vietnam National University, Hanoi, Vietnam
Correspondence: Hoang-Long Huynh, longlove1232002@yahoo.com
Communication: received 30 November 2020, revised 27 January 2021, accepted 31 January 2021
Digital Object Identifier: 10.32913/mic-ict-research.v2020.n2.943

Abstract: Multi-cloud Marketplace facilitates to create a
diverse ecosystem for cloud software and cloud resource
services provided by many stakeholders. To leverage the
advantage of multi-cloud environment, cloud application could
be a composition of software components which are able to
be distributed across various cloud providers. So the cloud
application is therefore a complex system. Consequently, an
important key problem remained in research is to define
multi-cloud application in a particular form and to construct
his description. In this paper, we particularly focus on de-
veloping a description method that can be taken to tackle
the lack of description for multi-cloud application by design-
ing description templates for CAM which was developed in
[1][2][3], called CAM-D. A completed application description
can be synthesized from individual component descriptions.
Our experimentation is expressed through the transformation
of CAM-D template to TOSCA specification illustrated by case
study. In addition, we also develop an flattening algorithm to
assist in mapping to TOSCA.

Keywords: Cloud Computing, Multi-cloud, Multi-cloud Mar-
ketplace, Multi-cloud Marketplace Application, Composable Ap-
plication Model (CAM), Software as a Service, Description
Method.

I. INTRODUCTION

At present, Cloud marketplace is an effective method for
cloud providers to delivery Software as Service (SaaS) in a
convenient way to consumers. Nevertheless, almost existing
cloud marketplaces are owned by vendors themselves, and
SaaS development is tightly coupled to Application Pro-
gramming Interfaces (APIs) and tools of individual cloud
providers. To overcome vendor lock-in problem, our ideal
is about a new Multi-cloud marketplace model, called
O-Marketplace [4], his ecosystem is depicted in Figure
2 including four actors: Cloud Consumers, Cloud App
Vendors/Developers, Cloud Providers and O-Marketplace
Administrator. SaaS supplied by O-Marketplace should be

tailored to meet the characteristics of multi-cloud by sepa-
rating cloud application into two parts, i.e. cloud software
and cloud platform (runtime system), and cloud software
could designed beyond a certain cloud provider. Ideally,
cloud software is decomposed into components which are
independently developed by various developers and can be
deployed across different clouds. The overall idea of Multi-
cloud application is illustrated in Figure 1 and shaped in
our previous studies [1][2], called Composable Application
Model (CAM).

Cloud C

Cloud A

Cloud B

Software
component

3

Software
component

1

Software
component

2

host on

host on

host on

connect to

connect to

Figure 1. Multi-Cloud Application

In another aspect, multi-cloud marketplace has required
manageability of cloud application. As such, there is an
urgent need to have a written-related multi-cloud appli-
cation description that predate, or have been developed.
Unfortunately, there are very few existing related works
to resolve this issue. There are three main approaches
to describe multi-cloud application. The first one is a
much-mentioned approach which is to use Domain Specific
Language (DSL) to describe cloud application presented
by K. Sledziewski et al. [5], E. Brandtzaeg et al. [6], G.
Baryannis [7], G. Sousa [8], and N. Ferry [9]. The second

51

Research and Development on Information and Communication Technology

Software
Component

Software
Component

Software
Component

Connect to

Software Composition

Software
Component

B

Software
Component

A

Connect to

Software Composition

Software
Component

B

Software
Component

A

Platform Component

Platform Component

Platform Component
Platform Component

Platform Component

Deploy on

Software Stack

Software
Component

B

Software
Component

A

Deploy on

Software Stack

Software
Component

B

Software
Component

A

Multi-Cloud Marketplace
(O-Marketplace)

Cloud App Vendors
/Developers

Cloud Providers

Cloud Consumers

O-Marketplace Administrator

Supply

SupplyManage

Figure 2. O-Marketplace Ecosystem

approach is to use open source solutions such as Heat [10]
and Juju [11] for describing and modeling composite cloud
applications and supporting deploying them on particular
cloud providers. The last approach is to adopt TOSCA spec-
ification to distribute a cloud application across multiple
clouds introduced by G. Tricomi [12], J. Carrasco [13], K.
Alexander and [14], and K. Saatkamp [15].

In general, two first approaches could be done on a single
cloud, and despite two notable efforts refined TOSCA [16]
to enable a customized distribution of the components
of an application to different cloud providers introduced
in [13][15] which mentioned in the last, these proposals
have limitation as follows: (i) there is no proposal to
independently describe components within a multi-cloud
application; (ii) the lack of solutions that are capable of
combining individual component descriptions to form a
complete description of a multi-cloud application. (iii) the
multi-cloud application specification validation mechanism
has not been built in yet based on proposed specification/de-
scription methods.

To tackle these limitations, our key approach is to develop
a description method which is able to cover multi-cloud
application in a uniform. This supports the distribution of
software components on heterogeneous multi-cloud plat-
forms. In this paper, we define a specification method for
multi-cloud application which is modeled by CAM intro-
duced in previous papers [4][1][2][3]. Our work towards
the following contributions:

• Defining the description templates for CAM.
• Presenting a novel approach for creating the multi-

cloud application description: the completed descrip-
tion of multi-cloud application is synthesized from the
individual component descriptions.

• For experimentation, we propose an algorithm for flat-
tening the description to TOSCA-based specification.

The rest of the paper is organized as follows: the core
of our work in this paper is presented in Section II, we
focus on making up description templates for CAM. In
Section III, the illustration of transformation from CAM-D
description template to TOSCA specification is shown. The
advantages of CAM-D is highlighted in Section V. Finally,
we conclude and summarize the contributions of the paper
in Section VI.

Cloud Software

Cloud Platform

Host on Host on Host on Host on

Host on

Connect to

... ...
Software

Component
02

Cloud Software
Stack Cloud Software Composition

Software
Component

01

Platform Component
01

Platform Component
n

Platform Component
n+1

Software
Component

n-1

Software
Component

n

Software
Component

n+1

Figure 3. Composable Application Model [2].

52

Vol. 2020, No. 2, December

II. CAM-BASED DESCRIPTION TEMPLATES

With the motivation to standardize the multi-cloud appli-
cation description in a uniform, we propose a description
method that is not only capable of expressing its behaviours
and properties in standardized description patterns, but
also meet the multi-cloud characteristics in general and O-
Marketplace proposed in [4] in particular. To achieve this
goal, our work focuses on developing description templates
for entire CAM and its components, which were defined
in our recent paper [2] including: Simple Cloud Software
Component, Cloud Software Stack, Cloud Software Com-
position, Cloud Platform Component, and CAM depicted in
Figure 3. The description of CAM application can be built
from individual descriptions based on the matching rules
proposed in [2]. In addition, an interesting point is that
CAM is defined as a nested structure, so the description
method has to express this special feature.

1. CAM-based Application

Before going further into details of the CAM description
templates, several conventions have been made as follows:

• All templates are written in a YAML-like format.
• We assume that all the defined templates are available

so that they can be referred via their ids.
• Since CAM components are designed in a nested

manner, we use dot-notation for accessing to an inner
element and/or property of a component. For example,
c.capabilities[cid].p stands for the property
p of the capability cid of the component c.

application <app id> =
software : <software component template>
arguments:
- <arg> : <value>
- ...

platforms :
- <platform> : <platform service

template>
arguments:
- <arg> : <value>
-

- ...
dependencies:
- <dependency>:
type: HOST-ON
from: <software>.<requirement>
to: <platform>.<capability>

end

Figure 4. CAM-based Application Template

A CAM-based multi-cloud application can be described
by an application script using the application template
depicted in the Figure 4. Each application should specify

a CAM-based cloud software component as well as a
cloud platforms on which we prefer to host the applica-
tion. The cloud software component and the platform are
characterized by sets of parameters which serve as user
preferences. The application script should also indicate the
correspondences between the software requirements and the
platforms in the section dependencies.

2. Platform Service Template

Platform services (Cloud Platform Component depicted
in Figure 5) are provided by cloud providers. In order to
integrate their services into our CAM-based system, cloud
providers should publish their services in form of Platform
Services Template as shown in the Figure 6.

Caps
Platform Component

Figure 5. Cloud Platform Component [2].

platform <platform id> =
capabilities:
- <capability> : <port signature>
- ...

parameters:
- <param> : <type>
- ...

parameter mappings:
- <capability>.<property> as <param>

default <value>
- ...

methods :
- <method> : <method type>
parameters:
- <arg> : <type>
-

- ...
end

Figure 6. CAM-based Platform Service Template

Each cloud platform service defines a set of capabilities
to provide to the cloud software. These capabilities should
match with the requirements of the software for the success-
ful deployment of the application. In order to perform the
matching algorithm, each capability and/or requirement is
associated to a port signature (illustrated in Figure 7) which
describes the properties and the operations provided by the
capability and/or needed for the requirement. Please note
that the a port signature is not only specifies the dependency
between a cloud software requirement and the platform
capability, but also is used to describe the dependency

53

Research and Development on Information and Communication Technology

among software components in a composition. We distin-
guish different kinds of dependency on a port signature by
port type which is either HOST-ON or CONNECT-TO.

signature <port signature id> =
type: <port type>
properties:
- <property> : <type>
- ...

methods :
- <method> : <method type>
parameters:
- <arg> : <type>
-

- ...
end

Figure 7. Port Signature

3. General Structure of a Cloud Software Component
Template

CAM-based cloud softwares and components are defined
in a uniform way using the Cloud Software Component
template (Figure 8).

Each component may have its own inner structure which
consists of a set of sub-components and the dependencies
(described in the Section Dependencies of the template)
among them. A CAM runtime should check the well-form
of a component by matching requirements to capacities
according to the specified dependencies. In a special case,
when the component is a Simple Software Component, this
inner structure is skipped.

The outer view of a CAM-based component consists of
a set of capabilities (described in the Section Capabil-
ities of the template) specifying what the component
provides, and a set of requirements (described in the Section
Requirements of the template) specifying what are
needed for managing and running the component.

Properties of these capabilities are mapped into a set
of parameters in the section parameter mapping so
that programmers will know how to characterize the com-
ponents when they are in use. In some special cases,
the component itself has extra parameters defined in the
section parameters. This is worth to mention that the
properties of sub-components requirements can be taken
from the properties of their corresponding capabilities from
platforms and/or other sub-components.

A component also provides a set of operations indicated
by methods in the methods section. The component script
should describes the set of arguments to a method as well
as its execution code, normally written in a special scripting
language.

component <component id> =
type: <component type>
Inner structure of the component
sub-components:
- <component> : <software component

template>
- ...

dependencies:
- <dependency>:
type: <port type>
from: <component>.<requirement>
to: <component>.<capability>

- ...
outer interface
capabilities:
- <capability> map-to

<component>.<capability>
- <capability> : <port signature>
- ...

requirements:
- <requirement> map-to

<component>.<requirement>
- <requirement> : <port signature>
- ...

parameters:
- <param> : <type>
- ...

parameter mappings:
- <capability>.<property> as <param>

default <value>
- ...

methods :
- <method> : <method type>
parameters:
- <arg> : <type>
- ...

code: <script>
- ...

end

Figure 8. General Structure of a Cloud Software Component Template

4. Simple Software Component Template

Simple Cloud Software Component (SSC) is the atomic
entity or the basic element of CAM. A SSC packs its
code and data together with the necessary requirements
and capabilities for deployment and operation. The model
of SSC is depicted in Figure 9. SSC can only reside in a
single cloud platform.

As mentioned before, a SSC doesn’t have its own inner
structure. Instead, programmers should define component’s
capabilities and requirements by specifying corresponding
port signatures. All of the code and data to manage and run
the component can be defined in the methods section.

A Simple Software Component can therefore be defined
using the template shown in Figure 10.

54

Vol. 2020, No. 2, December

sreqs

pcaps

scaps

preqs[0] preqs[d-1]
...

Base Component

Figure 9. Simple Cloud Software Component [2].

component <component id> =
type: SimpleComponent
capabilities:
- <capability> : <port signature>
- ...

requirements:
- <requirement> : <port signature>
- ...

parameters: ...
parameter mappings: ...
methods: ...

end

Figure 10. Simple Software Component Template

5. Cloud Software Stack Template

Cloud Software Stack (SS) represents a series of software
components established on each others deployed on a single
cloud platform. For simplicity, we define a SS with two
elements: a top component and a base component. In the
nested manner, we restrict top component to be a simple
component while base component can be either a simple
component or another stack.

Composing elements of SS depicted in Figure 11 and
we define the the description template for SS as showed in
Figure 12.

A description template of SS is well-formed if it satisfies
the following validation conditions:

• Top component and base component should be well-
formed;

• Type of the top component should be “SimpleCompo-
nent";

• Type of the base component should matches either
“SimpleComponent" or “SoftwareStack";

• The dependencies between the top component and
the base component defined in the section depen-
dencies should be guaranteed, i.e. signatures of the
top component requirements should match with the
signatures of the base component capabilities;

pcaps

scaps
run on top of

preqs

sreqs

Simple Component
(top)

Stack
(base)

Figure 11. Cloud Software Stack [2].

component <component id> =
type: SoftwareStack
inner structure
sub-components:
- top: <Component template>
- base: <component template>

dependencies:
- <dependency>:
type: HOSTON
from: top.requirements[<requirement>]
to: base.capabilities[<capability>]

- ...
outer interface
capabilities: ...
requirements:
parameters: ...
parameter mappings: ...
methods: ...

end

Figure 12. Software Stack Component Template

6. Cloud Software Composition Template

Cloud Software Composition (SC) represents a dis-
tributed multi-cloud software composition including cloud
components which are able to deploy on various cloud
platforms. Each component may connect to others via
software protocols. In our CAM model, we defined such
software protocols as port signatures of type “CONNECT-
TO".

For simplicity, we define a SC with 2 components:
left and right. Composing elements of SC is depicted in
Figure 13, and description template of Cloud Software
Composition is shown in Figure 14.

The description template of a SC is well-formed if it
satisfies the following validation conditions:

• All of its sub-components (i.e. left and right) are well-
formed.

55

Research and Development on Information and Communication Technology

• The dependencies between the left component and
the right component defined in the section depen-
dencies should be guaranteed, i.e. signatures of the
left component requirements should match with the
signatures of the right component capabilities;

Please note that we can extend the template for software
composition consisting more than two sub-components.
In this case, a dependency between sub-components is
a mapping from requirement of a sub-component to a
capability of its counter part. This extended template will
be used for describing flattening composition representing
in the next section.

connect to sreqs

preqs[0] preqs[d-1]
...

scaps
Simple Component

(first)
Simple Component

(second)

Figure 13. Cloud Software Composition [2].

component <component id> =
type: SoftwareComposition
inner structure
sub-components:
- left: <Component template>
- right: <component template>

dependencies:
- <dependency>:
type: CONNECT-TO
from: left.requirements[<requirement>]
to: right.capabilities[<capability>]

- ...
outer interface
capabilities: ...
requirements:
parameters: ...
parameter mappings: ...
methods: ...

end

Figure 14. Software Component Composition Template

III. TRANSFORMING FROM CAM-D TO TOSCA
SPECIFICATION

In order to prove the feasibility of our approach, it
is necessary to have a runtime system which is able to
parse our CAM-D application script and deploy the ap-
plication on specified cloud platforms. While this is still
on our on-going research, in this paper, we employ an
alternative method: translating CAM-D application script
to well-known TOSCA cloud application model and then
using existing TOSCA-based runtime for deploying the
application.

In general, our CAM-D application description template
is very similar to TOSCA topology template. In terms
of topology, the concept of Node in TOSCA template
is equivalent to our CAM-D software component, and
the concept of Relationship in TOSCA is equivalent to
our CAM-D dependency. Different from TOSCA, CAM-D
represents a cloud application in a nested manner for which
software components can be independently developed and
composed by different developers.

To transform a CAM-D application script to TOSCA
topology template, we apply a two-step process:

1) Flattening the given CAM-D application script into a
flattening composition;

2) Transforming the flattening composition into TOSCA
topology template

In the following sub-sections, we will give a short
representation about TOSCA as well as our two steps of
the transformation algorithm.

1. Topology and Orchestration Specification for Cloud
Application

Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA) [16] is an open standard built by OA-
SIS that defines the inter-operable description of cloud ap-
plication hosted on the cloud. TOSCA will enable the inter-
operable description of application and infrastructure cloud
services, the relationships between parts of the service, and
the operational behavior of these services independent of
the supplier creating the service, and any particular cloud
provider (Figure 15).

Topology Template

Relationship
Template

Node
Template

type for

type for

Group
Template

Service Template

Node Types

Node Type

Relationship Type

In
te

rfa
c

e
s

In
te

rfa
c

e
s

P
ro

p
e

rt
ie

s
P

ro
p

e
rt

ie
s

Relationship Types

Plans

}

}

}

}

Figure 15. TOSCA Service Template overview [16].

TOSCA will enable portable deployment to any compli-
ant cloud and enhance the portability multi-cloud provider
applications. So TOSCA is also very efficient in software
provisioning, deployment and management of cloud appli-
cation. It has been supported by many partners like IBM,
Reb Hat, Cisco, Citrix, EMC, etc. Thus, we utilize this

56

Vol. 2020, No. 2, December

standard as a target of the transformation to demonstrate
the feasibility of our proposed description method.

2. Flattening Algorithm

The first step of the transformation algorithm from CAM-
D application script to TOSCA topology template is to
flatten the nested composition of the CAM-D software com-
ponent into a flat composition where all sub-components of
the flat composition should be of type SimpleComponent.
The transformation should keep all external view of the
component, i.e. all requirements, capabilities, parameters,
and methods. The things should be change are internal
structure of the composition as well as the mapping of outer
requirements, capabilities, parameters to its corresponding
inner elements.

This would be done easily by using a recursive algorithm
shown as below:

00. Flattening Algorithm (CAM−D script);
01. Input :
02. − A nested software component
03. Output:
04. − A flattening software component
05. − A mappings from capabilities / requirements / parameters of input sub−components
06. to the correspondences of the output simple sub−components.
07. Begin
08. If c . type = "SimpleComponent"
09. Then
10. M = {e−>c.e, for each capability / requirement /parameter e of c}
11. Return (c ,M)
12. Else If c . type = "SoftwareStack"
13. Then
14. Begin
15. (new−top, top−mappings) = Flatten (c . top)
16. (new−base, base−mapping) = Flatten(c .base)
17. mappings = AddPrefix("top", top−mapping)

⋃
18. AddPrefix("base" , base−mappings)
19. sub−components = new−top.sub−components

⋃
new−base.sub−components

20. dependencies = new−top.dependencies
⋃

new−base.dependencies
⋃

21. UpdateDependencies(c.dependencies, mappings)
22. requirements = UpdateRequirements(c. requirements , mappings)
23. capabilities = UpdateCapabilities (c . capabilities , mappings)
24. parameter−mappings = UpdateParameters(c.parameter−mappings, mappings)
25. methods = UpdateMethods(c.methods, mappings)
26. new−mappings = MakeMappings(requirements, capabilities , parameter−mappings)
27. Return (FlatCompositions(sub−components, dependencies,
28. requirements , capabilities , c . parameters , parameter−mappings, methods),
29. new−mappings)
30. End
31. Else If c . type = "SoftwareComposition"
32. Then
33. Begin
34. (new−left , left −mappings) = Flatten (c . left)
35. (new−right, right −mapping) = Flatten(c . right)
36. mappings = AddPrefix(" left " , left −mapping)

⋃
37. AddPrefix(" right " , right −mappings)
38. sub−components = new−left.sub−components

⋃
new−right.sub−components

39. dependencies = new−left .dependencies
⋃

new−right.dependencies
⋃

40. UpdateDependencies(c.dependencies, mappings)
42. requirements = UpdateRequirements(c. requirements , mappings)
43. capabilities = UpdateCapabilities (c . capabilities , mappings)
44. parameter−mappings = UpdateParameters(c.parameter−mappings, mappings)
45. methods = UpdateMethods(c.methods, mappings)
46. new−mappings = MakeMappings(requirements, capabilities , parameter−mappings)
47. Return (FlatCompositions(sub−components, dependencies,
48. requirements , capabilities , c . parameters , parameter−mappings, methods),
49. new−mappings)
50. End
51. End;

In this algorithm, the function AddPrefix(s,
mappings) add a component access prefix s to all
origins of mappings to avoid ambiguity. The functions
UpdateDependencies, UpdateRequirements,
UpdateCapabilities, UpdateParameters,
UpdateMethods are just used for updating all references
to the requirements/capabilities/parameters of sub-
components of the input component by the corresponding
elements of the SimpleComponent sub-components in

the target component. The function MakeMappings
just accumulates all modified mappings of requirements,
capabilities, and parameters. Due to the limitation of the
paper, we omit the presentation of these functions.

Correctness: The flattening algorithm is correct in the
following principles:

• All sub-components of a resulting flat component are
components of type SimpleComponent;

• Dependencies between the top and the base sub-
components of any SofwareStack inside the structure
of input component should be reflected in the depen-
dencies of resulting flat component.

• Dependencies between the left and the right sub-
components of any SofwareComposition inside the
structure of input component should be reflected in
the dependencies of resulting flat component.

• All mappings (requirement mappings, capability map-
pings, parameter mappings) of the input component
should be changed in the output flat component so
that they maps their original external names to spe-
cific names of requirements/capabilities/parameters of
corresponding SimpleComponents.

The correctness of the algorithm can be easily proved by
reduction on the hierarchical structure of the input nested
component.

Complexity: The flattening algorithm is proceeded re-
cursively on the hierarchical structure of the input nested
component. Thus the complexity of the algorithm is linear
to the number of the sub-components inside that structure,
i.e. O(n) for n is the number of sub-components.

3. Mapping to TOSCA

As a result of the above flattening algorithm, a CAM-D
application will be transformed into a flat model in which
all sub-components are of type SimpleComponent.

The second step of the transformation algorithm is
to translate this flat application model together with its
undelying platforms into TOSCA topology template. The
translations is rather simple. Each sub-components and/or
platforms will be transformed into a TOSCA node. Each
dependency among components and between a component
and a platform will be translated into a TOSCA relationship.
We do not give further details of this translation algorithm.
Instead, result from an experimentation which will be given
in the next section will demonstrate our mapping method.

IV. EXPERIMENTATION WITH CASE STUDY

In this section, we demonstrate the feasibility of CAM-
D by translating flattening description template of CAM-D
into TOSCA specification template with a case study.

57

Research and Development on Information and Communication Technology

1. Case Study

Cloud Platform A Cloud Platform B

Cloud Platforms

Network NetworkStorage Storage

UBUNTU UBUNTU

Web Server
Apache

Host on

Host onConnect to

Host on

Host on

MySQL
RDBMS

PHP Container
Apache PHP Module

Wordpress PHP
Application Wordpress

Data

Wordpress DB (Stack)

Wordpress App Software (Composition)

Wordpress Application

Wordpress Server (Stack)

Stack:
Apache PHP

Host on

Figure 16. Wordpress Application modeled by CAM

application Wordpress-Application =
software: Wordpress-Software

arguments:

platforms :
p1 : VM-Platform

arguments:
provider: "dsg@openstack"
instanceType : "000001920"
baseImage :

"a82e054f-4f01-49f9-bc4c
-77a98045739c"

p2 : VM-Platform
arguments:

provider: "dsg@flexiant"
instanceType : "000001920"
baseImage :

"a82e054f-4f01-49f9-bc4c
-77a98045739c"

dependencies:
d1:

type: HOST-ON
from: software.requirements[R1]
to: p1.capabilities[vm]

d2:
type: HOST-ON
from: software.requirements[R2]
to: p2.capabilities[vm]

end

Figure 17. Wordpress Application Description Template

For validate our idea, we deploy a WordPress application
on two Clouds: OpenStack and Flexiant. We use CAM to

model Wordpress application which is depicted in Figure
16. There are five software components of cloud soft-
ware: Wordpress PHP Application, PHP Container, Apache,
Wordpress DB, MySQL covered in two stack, and two
Platform components are cloud infrastructures: OpenStack
and Flexiant. These software components modeled in three
software stack and one software composition. The CAM-D
template of Wordpress Application showed in Figure 17.

According CAM-D, the description template of Word-
press Application is created based on individual descrip-
tion templates which represent for the type of CAM-
based components according to the degree of CAM. The
overview of individual description templates of Word-
press Application is shown in Figure 18. The full
code of Wordpress Application Templates is available at
https://github.com/longlovehl/Descriptions/.

Figure 18. Wordpress Application Description Templates

58

Vol. 2020, No. 2, December

2. Transforming CAM-D Template to TOSCA
Specification

To transform CAM-D Template to TOSCA specifica-
tion, we first use proposed flattening algorithm to flatten
the Wordpress Application into a graph representation.
Then, we map flattening description template of WordPress
Application into TOSCA-based specification. All nodes
of the graph are mapped to Node Template of TOSCA,
implementation details of the Node Template are omitted
from the specification for brevity. Edges of the graph are
mapped to Relationship Template. According to the original
of the edges, i.e., from a stack or from a composition, the
type of corresponding Relationship template will be given
as HOSTON or CONNECTTO. The result is showed in
Figure 19.

<?xml version="1.0"?>
<ns2:Definitions id="WordpressApp"

xmlns:ns2="http://docs.oasis-open.org/toscans/2011/12"
name="WordpressApp">

<ns2:ServiceTemplate id="WordpressTopology">
<ns2:TopologyTemplate>
<ns2:RelationshipTemplate id="WordpressPHP_HostOn_PHPContainer"

type="HOSTON">
<ns2:SourceElement ref="PHPContainer"/>
<ns2:TargetElement ref="WordpressPHP"/>

</ns2:RelationshipTemplate>
...
<ns2:RelationshipTemplate id="WordpressPHP_ConnecTTo_MySQLRDBMS"

type="CONNECTTO">
<ns2:SourceElement ref="MySQLRDBMS"/>
<ns2:TargetElement ref="WordpressPHP"/>

</ns2:RelationshipTemplate>
<ns2:NodeTemplate id="ApacheVM" type="os" maxInstances="3" minInstances="1">

<ns2:Properties>
<MappingProperties>
<MappingProperty type="os">

<property name="provider">dsg@openstack</property>
<property name="instanceType">000001920</property>

<property name="baseImage">a82e054f-4f01-49f9-bc4c-77a98045739c</property>
<property name="packages"/>

</MappingProperty>
</MappingProperties>

...
<ns2:NodeTemplate id="MySQLVM" type="os" maxInstances="2" minInstances="1">

<ns2:Properties>
<MappingProperties>

<MappingProperty type="os">
<property name="provider">dsg@flexiant</property>
<property name="instanceType">000001920</property>
<property name="baseImage">a82e054f-4f01-49f9-bc4c-77a98045739c</property>
<property name="packages"/>
</MappingProperty>
</MappingProperties>

...
</ns2:NodeTemplate>
<ns2:NodeTemplate id="MySQLRDBMS" type="software" maxInstances="1"

minInstances="1">
...
<ns2:Requirements>
<ns2:Requirement id="MySQLVM" type="HOSTON"/>
</ns2:Requirements>
<ns2:Capabilities>
<ns2:Capability id="WordpressPHP" type="CONNECTTO"/>
</ns2:Capabilities>
...

</ns2:NodeTemplate>
</ns2:TopologyTemplate>
</ns2:ServiceTemplate>
<ns2:ArtifactTemplate id="Artifact_93f8753b-17ab-43c5-8f11-e3ec98fe3224"

type="sh">
<ns2:Properties />
<ns2:ArtifactReferences>
<ns2:ArtifactReference
reference="http://.../upload/files/wordpress/install_WordpressPHP.sh" />

...
</ns2:ArtifactTemplate>
...
</ns2:Definitions>

Figure 19. TOSCA-based Description of WordPress Application

V. THE ADVANTAGES OF CAM-D

To evaluate the advantages of CAM-D in particular and
CAM [2][3] in general, we make a comparison between
CAM-D and TOSCA in Table I because TOSCA has been
the well-known standard. However, TOSCA specification
has not totally developed for multi-cloud application spec-
ification.

TABLE I
THE COMPARISON BETWEEN CAM-D AND TOSCA SPECIFICATION

FEATURES CAM-D TOSCA
Specification

Topology Nested structure Flat structure
Cloud software
portability YES NO

Component-based cloud
application description YES NO

Synthesized from component
specifications YES NO

Multi-cloud service
matchmaking YES NO

The above comparison showed significant differences
of CAM-D compared with TOSCA Specification. CAM-D
especially supports Cloud software portability, Component-
based cloud application description, Synthesized of compo-
nent specifications, and Multi-cloud service matchmaking.
These features have proved the feasibility of our proposal
with distinct advantages for cloud application development
as follows:

• A cloud application may be constructed as a distributed
system of which elements are compute servers run-
ning specific software and located at specific cloud
providers.

• Developers are free to evolve their cloud software with-
out any technology restriction from cloud providers.
They also can develop and sell their small pieces
instead of complete software solutions.

• Enhancing the ability to reuse the cloud software
component, developers can build up an application by
just incorporating existing components of others into
their own software solution. This save cost and time
in cloud application development.

In addition, an interesting feature of CAM-D that is quite
similar to a program written in a programming language.
The application template is the main program, component
templates are procedures and arguments of a procedure
can refer to parameters of others. This is very convenient
for developer to independently develop cloud software. He
could package the software component as a “Black Box"
and just express properties to the outer ports of such
component. This is the special feature that CAM-D brings.

59

Research and Development on Information and Communication Technology

VI. CONCLUSION

In this study, we build a description method (CAM-D)
that supports to describe multi-component cloud software.
To implement this idea, firstly, we define CAM-based
description templates for multi-component cloud software
modeled in a nested structure. Secondly, we develop flat-
tening algorithm to cover nested description to flattening
description. Thirdly, As an illustration, we experimen-
tally transform the description templates of CAM-D into
TOSCA-based specification templates and demonstrate this
process in a particular example – the Wordpress Applica-
tion. Finally, the advantages of CAM-D is expressed. To
sum up, the key of our work is to create a uniform for multi-
cloud applications. The proposed concepts and templates
can totally be applied to multi-cloud marketplace.

REFERENCES

[1] H.-L. Huynh, H.-D. Nguyen, V.-T. Le, and T.-T. Nguyen,
“A Composable Application model for Cloud Marketplace,”
Journal of Vietnam Science and Technology, vol. 16, no. 5,
pp. 40–45, 2017.

[2] H.-L. Huynh, H.-D. Nguyen, and T.-V. Le, “Matchmaking
for Multi-cloud Marketplace Application,” Journal of Infor-
mation and Communications, vol. 2019, no. 1, pp. 31–42,
2019.

[3] H.-L. Huynh, V.-D. Tran, H.-D. Nguyen, Z. Hu, T.-V. Le, and
Q.-T. Huynh, "Auto-Updating Portable Application Model of
Multi-cloud Marketplace through Bidirectional Transforma-
tions System," International Conference on Intelligent Soft-
ware Methodologies, Tools, and Techniques (SOMET 2019),
pp. 11-24, Malaysia, Sep 2019. DOI:10.3233/FAIA190035.
(SCOPUS)

[4] H.-L. Huynh, H.-D. Nguyen, V.-T. Le, and D.-H. Le, “To-
wards the cloud marketplace for Multi-cloud infrastructures,”
in 18th Vietnam National Conference: Selected issues of
information technology and communication, pp. 100-105,
November 2015.

[5] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-Based
Approach to Software Development and Deployment on
Cloud,” in 2010 24th IEEE International Conference on
Advanced Information Networking and Applications, pp.
414–421, April 2010.

[6] E. Brandtzaeg, S. Mosser, and P. Mohagheghi, “Towards
CloudML, a Model-based Approach to Provision Resources
in the Clouds,” in 8th European Conference on Modelling
Foundations and Applications (ECMFA), pp. 18–27, 2012.

[7] G. Baryannis, P. Garefalakis, K. Kritikos, K. Magoutis, A.
Papaioannou, D. Plexousakis, and C. Zeginis, “Lifecycle
management of service-based applications on multi-clouds,”
in Proceedings of the 2013 International workshop on Multi-
cloud applications and federated clouds (Multicloud’13), pp.
13–20, 2013.

[8] G. Sousa, W. Rudametkin, and L. Duchien, “Automated
setup of multi-cloud environments for micro services ap-
plications,” in 2016 IEEE 9th International Conference on
Cloud Computing (CLOUD), pp. 327–334, 2016.

[9] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lushpenko,
and A. Solberg, “CloudMF: Model-driven management of

multi-cloud applications,” ACM Trans. Internet Technology,
vol. 18, Jan. 2018.

[10] “OpenStack HEAT URL.”
https://docs.openstack.org/heat/latest/. Accessed: 2019-
04-26.

[11] "Juju Charms URL.” https://jujucharms.com/. Accessed:
2019-04-26.

[12] G. Tricomi, A. Panarello, G. Merlino, F. Longo, D. Bru-
neo, and A. Puliafito, “Orchestrated multi-cloud application
deployment in openstack with TOSCA,” in 2017 IEEE Inter-
national Conference on Smart Computing (SMARTCOMP),
pp. 1–6, 2017.

[13] J. Carrasco, J. Cubo, and E. Pimentel, “Towards a flexible
deployment of multi-cloud applications based on tosca and
camp,” in Advances in Service-Oriented and Cloud Com-
puting (G. Ortiz and C. Tran, eds.), (Cham), pp. 278–286,
Springer International Publishing, 2015.

[14] K. Alexander, C. Lee, E. Kim, and S. Helal, “Enabling
end-to-end orchestration of multi-cloud applications,” IEEE
Access, vol. 5, pp. 18862–18875, 2017.

[15] K. Saatkamp, U. Breitenbücher , O. Kopp, and F. Ley-
mann, “Topology Splitting and Matching for Multi-Cloud
Deployments,” in Service-Oriented Computing-ICSOC 2017
Workshops, pp. 379–383, 2017.

[16] OASIS, “Topology and Orchestration Specification for Cloud
Applications Version 1.0,” Organization for the Advance-
ment of Structured Information Standards, 2013.

Hoang-Long Huynh received B.S (2008) from
Nhatrang University and M.S (2012) from
Hanoi University of Science and Technology,
Vietnam. His research interests in Cloud Com-
puting.
Email: longlove1232002@yahoo.com

Huu-Duc Nguyen received PhD degree (2006)
in Computer Science from Japan Advanced
Institute of Science and Technology (JAIST),
Japan. He is currently the director of the Center
for Data and Computation Technologies, Hanoi
University of Science and Technology. His main
research topics include compiler construction,
high performance computing, distributed sys-

tems and big data.
Email: ducnh@soict.hust.edu.vn

60

Vol. 2020, No. 2, December

Trong-Vinh Le received PhD degree (2006) in
Computer Science from Japan Advanced Insti-
tute of Science and Technology (JAIST), Japan.
He is currently Associate Professor and the di-
rector of the Center for Information Technology
and Communication, VNU University of Sci-
ence. His main research topics include theory of
algorithms, computer networks.

Email: vinhlt@gmail.com

Quyet-Thang Huynh received PhD degree
(1995) in Information and Computer Sciences
from Varna Technical University, Bulgaria. He is
currently Associate Professor and the president
of Hanoi University of Science and Technol-
ogy. His main research topics include Software
Quality, Software Testing, Methods in Soft-
ware Development, Multi-Objective Optimiza-

tion, Project Management, Big Data Processing and Analytics.
Email: thanghq@soict.hust.edu.vn

61

