
Research and Development on Information and Communication Technology

Elasticity for MQTT Brokers in IoT
Applications
Linh Manh Pham1,2,3, Tien-Quang Hoang4, Xuan-Truong Nguyen4

1 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet,
Cau Giay, Ha Noi, Vietnam
2 Institute of Information Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,
Ha Noi, Vietnam
3 VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
4 Hanoi Pedagogical University 2, 32 Nguyen Van Linh, Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam
Correspondence: Linh Manh Pham, linhmp@vnu.edu.vn
Communication: received 7 November 2020, revised 7 December 2020, accepted 31 January 2021
Digital Object Identifier: 10.32913/mic-ict-research.v2020.n2.941

Abstract: Many domains of human life are more and more
impacted by applications of the Internet of Things (IoT).
The embedded devices produce masses of data day after day
requiring a strong network infrastructure. The inclusion of
messaging protocols like MQTT is important to ensure as few
errors as possible in sending millions of IoT messages. This
protocol is a great component of the IoT universe due to its
lightweight design and low power consumption. Distributed
MQTT systems are typically needed in actual application
environments because centralized MQTT methods cannot
accommodate a massive volume of data. Although being
scalable decentralized MQTT systems, they are not suited to
traffic workload variability. IoT service providers may incur
expense because the computing resources are overestimated.
This points to the need for a new approach to adapt workload
fluctuation. Through proposing a modular MQTT framework,
this article provides such an elasticity approach. In order to
guarantee elasticity of MQTT server cluster while maintaining
intact IoT implementation, the MQTT framework used off-
the-shelf components. The elasticity feature of our framework
is verified by various experiments.

Keywords: Elasticity, MQTT broker, Cloud computing, Internet
of Things.

I. INTRODUCTION

The Internet of Things (IoT) has had a significant in-
fluence on many aspects of life at various scales, ranging
from households to enterprises to large organizations or in-
dustries. Millions of connected computers, with or without
human interference, are behind IoT applications, attempting
to communicate and transfer data over the Internet. It is
predicted that, by 2050, there will be about 170 billion
objects or things connected to the Internet [1]. Additionally,

the IoT network can hold between 50 and 100 trillion
connected objects, and it can track the movement of each
object. Every person living in metropolitan areas can be
surrounded and monitored by 1000 to 5000 IoT objects.
Currently, by 2020, our world has 4 billion connected peo-
ple, over 25 million applications, over 25 billion embedded
and intelligent systems, and 50 trillion Gigabytes of data
generated. This market produces 4 trillion dollars in revenue
for service providers [2].

In order to support the communication of billions of
IoT devices and to rotate the produced masses of data,
IoT service providers need to deploy and maintain robust
and scalable network infrastructures. When IoT applications
scale beyond the scale of household applications to larger
systems such as cities or nations, the number of IoT devices
can grow very quickly with unpredictable degrees. That is
why IoT infrastructures are being developed that not only
have strong fault tolerance but also need to be scalable.
Most modern IoT infrastructures today deploy an essential
component known as the Message Queuing Telemetry
Transport (MQTT) server. These brokers use the MQTT
protocol, a Machine to Machine (M2M) open protocol that
has been around since 1999. It is an open industry standard
issued by OASIS and ISO (ISO/IEC 20922) [3]. Thanks
to advantages such as compact size, bandwidth savings,
low battery power consumption, and space/time separation,
MQTT brokers are increasingly undeniably dominating the
field of IoT.

Although MQTT broker solutions recently applied both
centralized and distributed approaches to manage millions
of incoming connection from end devices in a short amount

62



Vol. 2020, No. 2, December

Figure 1. Typical structure of an IoT application using MQTT brokers

of time, there are only several solutions which have func-
tions of adapting to fluctuations in workload generated by
loT devices. This variation in load can occur when the num-
ber of loT devices fluctuates unpredictably during certain
times. In reality, citywide loT applications often deal with
dispersed and sporadic terminal equipment, resulting in a
shift in the number of devices involved in the application.
For example, smart cars are more likely to link to vehicle
networks connected during peak hours than during off-peak
hours, resulting in the generation of more IoT data during
specific times. This necessitates the development of new
MQTT-based systems that not only understand how to scale
to meet demand but also keep up with changes in workload
created by the terminal. In other words, it is a strategy for
making MQTT’s brokers more flexible.

Elasticity is a fundamental property of Cloud Computing
as defined by NIST [4]. Because of scalability, cloud
resources are not overused or under-utilized. This does not
only save money for the Cloud service provider, but also
positively enhances customer experience with the service
provided. It is a fact that many IoT applications have already
been deployed or are in the process of being deployed on the
Cloud. It is worth noting that loT resources such as MQTT
brokers deployed on the Cloud may also benefit from this
elasticity characteristic of the Cloud.

In this article, we suggest an architectural framework for
making MQTT brokers elastic. To achieve this aim, here is
what to do:

• We propose a new architecture framework that can
flexibly enable elasticity to distributed MQTT brokers
while maintaining all the original features of the
MQTT protocol.

• We specifically implement the proposed architectural
framework using the open-source MQTT brokerage
service (EMQX) and private cloud platform (Open-
Stack).

• We perform experiments to validate the proposed ar-
chitecture framework using the version deployed with
the aforementioned open-source applications.

The rest of the paper is laid out as follows. Section 3
describes in detail the overall architecture of the proposed
MQTT architectural framework after highlighting related
studies in Section 2. Section 4 discusses implementing the
architecture framework using suitable open-source tools.
Section 5 presents the validation as well as the results.
Finally, in Section 6, we make our conclusions.

II. RELATED WORK

1. MQTT

MQTT is a message-oriented middleware (MOM) soft-
ware following the publish/subscribe model [5]. To ensure
secure transmission in environments with many limitations,
IoT applications clearly need an efficient and powerful
solution such as the MQTT broker model. Some of the most
commonly used MQTT broker solutions today are EMQX,
HiveMQ, VerneMQ, Moquette, Mosquitto, etc.

In recent decades, many IoT applications have used
MQTT brokers such as [6], [7], [8], [9], [10], [11]. The
typical structure of an IoT application using MQTT brokers
deployed with remote centralized data centers (as in a
Cloud environment) is depicted in Figure 1. The application
aims to gather data from a variety of loT devices and
sensors, then process and store these data, and finally sends
notifications and reports to end-users (using laptops, mobile

63



Research and Development on Information and Communication Technology

devices, tablets, etc.). In certain situations, collected data
may be released directly to the topics subscribed to by the
end-user without any data analysis. Control commands, like
every other form of MQTT message, can be published to
the command topic in the brokers. These messages will be
stored in cloud archives and transmitted to IoT devices or
sensors using some programming mechanisms. In the case
of time-sensitive applications, command messages can also
be sent directly to IoT devices without having to be sent
to the Cloud. We discovered that the IoT devices, end-user
interfaces, and data analysis systems are all different types
of MQTT clients that produce and ingest remotely measured
data.

2. Distributed MQTT broker

Many IoT applications typically implement a centralized
MQTT broker capable of keeping all subscribed topics.
However, in this model, it is easy for the server to become
an obstacle to the entire system. To prevent this, a variety
of distributed solutions have been suggested, which can
be divided into two categories: a bridged broker and a
clustered broker. The two brokers could be bridged in the
first model to serve more messages from the client while
remaining separate from each other’s locations. Published
messages are forwarded from a broker to a broker bridged
with its specific access policies. A complete mesh network
needs to be formed between the brokers (each one must
have connections to all the other machines) so that any
MQTT client can connect to any brokers that they want.
Therefore, using the bridging model to gain the elastic
function is too complex. It is only suitable for simple
networks which have a few MQTT brokers. The MQTT
brokers that support bridging include EMQX, HiveMQ,
VerneMQ, Moquette, Mosquitto, JoramMQ, etc. [12]. In
the study of Collina et al. [13], Schmitt et al. [14], and
Zambrano et al. [15], some implementations of this model
have been reported.

MQTT brokers in a cluster model utilize subtopics in a
hierarchical structure. One of the brokers (B0) keeps the
original topics and the child topics that have registrations
related to them. The other servers (B1, B2, etc.) only
keep relevant subtopics that originated from B0. Topic
branches operate in a server that corresponds to MQTT
registrations for these brokers. As a result, the costs between
servers based on the cluster model are significantly reduced
compared to the bridging model. Thanks to the brokers’
transfer knowledge about the topic and the routing table,
any MQTT client may establish or continue their session
by connecting or reconnecting to any broker. Only a few
MQTT brokers, such as RabbitMQ, VerneMQ, EMQX and
HiveMQ [16], currently support the full capabilities of the

cluster model. The work of Jutadhamakorn et al. [17],
Thean et al. [18], and Detti et al. [19] are some of the
studies that follow this trend.

3. Elastic MQTT broker

One of the fundamental properties of Cloud Comput-
ing is elasticity. Cloud resources can be provisioned or
released when demanded thanks to this unique feature.
Today, loT applications are often deployed on the Cloud
to utilize the advantage of this environment such as on-
demand measurement services, wide-area network capabil-
ity as well as radically supported resource elasticity. Many
solutions, including DOCKERANALYZER [20], Proliot
[21], BDAaaS [22] and ACD [23] have attempted to provide
scalability for components of IoT applications. However,
only a few elasticity solutions for MQTT brokers have been
proposed, including Broker [24], E-SilboPS [25]. Many
MQTT-specific customizations have been simplified or
ignored because Brokel only defines a multilevel elasticity
model for brokers through the publish/subscribe model
(including MQTT) in general. E-SilboPS is a scalable
content-based subscription/publishing system specifically
designed to support sensing and contextual communication
in IoT-based services. Therefore, it also ignores many of
the customized Quality of Service (QoS) parameters of the
MQTT protocol and only provides content-based elasticity.
One of the prerequisites for a comprehensive elastic MQTT
is that the solution must use one of the distributed models
mentioned in sub-section II.2.

III. ARCHITECTURE OF ELASTIC MQTT
FRAMEWORK

This section presents the proposed elastic MQTT archi-
tectural framework. The system is designed with a flexible
architecture containing a representative set of modules.
When a version of the framework is deployed on the
Cloud, each representation module is specialized into a
specific open-source software component that is already
available. Framework’s modules can therefore be flexibly
replaced to gain new features, for higher efficiency, or
lower software licensing costs. The architecture framework
also supports the MQTT clustered broker model to reduce
communication costs among the cluster servers. Figure 2
shows the framework’s overall architecture, which includes
the following modules:

• MQTT Broker Cluster: A group of MQTT brokers
implements a distributed publish/subscribe model with
the customized QoS parameters. The cluster contains
several systems that provide an execution environment
called a node. The nodes connect to each other using

64



Vol. 2020, No. 2, December

Figure 2. The architecture of Elastic MQTT Framework

Figure 3. Schematic diagram of data flow during publishing - subscribing messages using load balancer

TCP/IP and communicate by transmitting the message.
Each node holds sections related to itself in the topic
system and the current subscriptions. This mechanism
enables the published messages to be routed over the
entire cluster from the first node that receives the
message to the last node that sends it to the subscriber.
Nodes can join the cluster manually or automatically.
With automatic manner, automatic mechanisms for

cluster identification and joining such as IP multicast,
dynamic DNS or ETCD [26] need to be supported.
Nodes can be deployed on either public or private
clouds. Public Cloud providers, such as AWS, Azure,
or private cloud platforms, such as OpenStack, Cloud-
Stack, could all be viable options.

• Load Balancer: A Load Balancer (LB) is usually
deployed in front of an MQTT cluster to distribute the

65



Research and Development on Information and Communication Technology

Figure 4. Data flow of components when it has a resource scaling event on MQTT brokers

Figure 5. An implementation of the elastic MQTT architectural framework

connections and messages from the devices into the
MQTT cluster. LB also enhances the availability of
clusters, balances load between nodes in the cluster,
and provides dynamic scalability. The links between
LB and the nodes in the cluster are simple TCP
connections. By doing this, a single MQTT cluster
can serve millions of clients. Thanks to LB, the
MQTT client only needs to know one connection point
instead of maintaining a long list of MQTT brokers.
A schematic diagram of the data flow during publish-
ing - subscribing messages using a load balancer is
illustrated in Figure 3.

• Orchestrator: This module parses descriptions of
system components in their domain-specific high-level
language (i.e., Domain-Specific Language - DSL) and

then deploys, manages, and monitors the full life cycle
of all components involved. Those components include
resources such as virtual machines, containers, images,
security groups, alerts, extension policies, etc. DSL
grammar can be derived from XML, JSON, or YAML
with the primary motivation to keep things simple and
user-friendly. Within the architecture framework, the
Orchestrator deploys and manages the MQTT brokers
as well as resources of elastic decision-making block
such as Metering, Metric Storage, and Alarming.

• Telemetry: This module includes three sub-modules:
Metering, Metric Storage, and Alarming.

Metering: The goal of this module is to collect, stan-
dardize, and transform data generated by coordinated
components effectively. These data will be used to gen-

66



Vol. 2020, No. 2, December

erate multidimensional views and help resolve different
telemetry cases. Among them, data of specific metrics
(i.e., measurements) are collected and analyzed for the
purpose of decision-making on elasticity. Alarming
and Metric Storage are two modules that directly
exploit these measures.

Alarming: Its goal is to provide the ability to trig-
ger response actions based on predefined rules relied
on sample data or events collected by the Metering
module. It consists of two main sub-modules: “Alarm
evaluator” and “Alarm notifier”. The first module
evaluates the measurements of a given metric stored in
the Metric Storage module to find out whether they are
over or below a predetermined threshold or not. The
second module activates the notifications and sends
them to the Orchestrator to order the corresponding
elastic actions such as increasing/ decreasing the num-
ber of MQTT brokers.

Metric storage: A database that mainly stores ag-
gregate measures of cluster nodes such as system
performance metrics. A measurement is a list of the
form (timestamp, value) for a given managed resource.
Resources can be anything from the temperature of
the nodes to the CPU usage of a virtual machine.
Besides, the database also stores events, which are lists
of things happening in the Cloud infrastructure such
as a request to an API received, a virtual machine
started, a photo uploaded, or anything else. Stored
measurements are retrieved for monitoring, billing, or
alerting purposes, in which saved events are useful for
testing, performance analysis, debugging, etc.

• Cloud infrastructure: It manages, provides, and dy-
namically releases virtual resources for scalability. For
“unlimited” resources, all private, public, or hybrid
clouds may be required to deploy.

• Messaging server: It is essential to carry out com-
munication between the modules of the architecture
framework by exchanging messages. It creates chan-
nels to be connected using popular communication
protocols like CoAP, AMQP or even MQTT.

All the modules of the framework are detachable. That
means the boot order of the components is not entirely
crucial. Even so, some modules working independently
usually do not make much sense, so there are still pre-
requisites for the start-up of other modules beforehand.
Likewise, the components and resources are described and
managed by the Orchestrator, which can be instantiated
at any point in time. The Orchestrator must be able to
resolve dependencies between the components and there-
fore come up with a deployment plan that contains the
correct order of installation. From the system description

to the deployment plan, the Orchestrator needs to use
a series of resolvers such as Learning Automata based
allocators, Constrained Programming-based solvers, and
Heuristics and Meta solvers. When an event or combi-
nation of events and conditions occurs during execution,
the Orchestrator generates the corresponding scaling plan
and makes the necessary modifications to transform the
existing implementation model to the proposed deployment
model describing in the elastic plan. Modifications include
actions that comply with ECA (Event-Condition-Action)
laws such as horizontal or vertical scaling of a resource
when measurements of the resource violate the thresholds
beforehand. Figure 4 illustrates a simplified coordination
diagram between the components mentioned in the MQTT
architectural framework during the resource elastic event.

IV. THE IMPLEMENTATION

In this section, we present a specific deployment of the
architectural framework proposed in the previous section. It
mainly supports cloud-based IoT applications that require
scaling as an essential feature. These applications include,
but are not limited to, applications for big data analysis or
applications that are sensitive to latency. With the principle
of developing software for the open science community
[27], we prioritize the combination of open source solutions
that are most suitable for our architectural framework
where they are being used universally. Figure 5 depicts a
deployment of the architectural framework whose details
are described as following.

• MQTT broker cluster using EMQX: EMQX is based
on the distributed Erlang / OTP programming platform
and the Mnesia database [28]. It provides broker nodes
that run in parallel and are highly fault-tolerant and
distributed. It is one of the few open-source MQTT
solutions that support the clustered model. Further-
more, EMQX is the only solution that supports all
three levels of MQTT QoS, as well as both MQTT
protocols for conventional networks and MQTT-SN for
sensor networks. EMQX supports node autodetection
and cluster auto-joining with various strategies such
as IP multicast, ETCD, dynamic DNS and K8s [29].
In that way, when a broker node comes in or out
corresponding to the scaling action, the cluster will
automatically recognize the changes and update its
configuration to reflect the number of new nodes.

• Load Balancer: Several commercial LB solutions
that are supported by EMQX such as AWS, Aliyun,
or QingCloud. On open-source software, HAProxy
[30] can act as an LB for the EMQX cluster and
allocate TCP connections. Many dynamic scheduling

67



Research and Development on Information and Communication Technology

algorithms can be assigned on HAProxy such as round
robin, least connections, or random.

• Cloud infrastructure: To serve the open science com-
munity, OpenStack [31], an open-source private Cloud,
is chosen to provide and release virtual resources. With
a supported worldwide community of users and well-
maintained mighty services, OpenStack fits our goals
well. Some of the specific OpenStack services used for
our deployment are Nova, Keystone, Glance, Horizon,
Swift, and Neutron. Because OpenStack cloud is se-
lected, the following modules are officially supported
by OpenStack services.

• Orchestrator: The official orchestrator supported by
OpenStack is Heat service [32]. The infrastructure for
a cloud application is depicted in the legibly Heat
template file and edited by humans. Infrastructure
resources that can be described include servers, stor-
age, users, security groups, floating IP, etc. Heat also
provides an automatic elasticity service that integrates
with the Telemetry sub-modules, so the scaling server
group can be included as a resource in the template
file. This is a perfect fit for achieving elasticity goals.
Sample files can also describe dependencies between
resources (for example, this floating IP is assigned
to this virtual machine). This helps Heat generate all
managed components in the correct order to fully
launch the application. Heat manages the entire life
cycle of an application and knows how to make the
necessary dynamic changes. Finally, it also handles the
deletion of all deployed resources when the application
completes.

• Telemetry: OpenStack has several officially supported
services for the Telemetry. These include the Ceilome-
ter service for Metering, Aodh for Alarming, and
Gnocchi for Metric Storage.

Metering: The Ceilometer service [33] provides the
following functions: (1) Exploration of measurement
data of the OpenStack service, (2) Collecting events
and measuring data by tracking notifications sent from
the service, (3) Exporting data collected to various
defined targets including data warehouse and queue
containing record.

Alarming: When the measurement data or the col-
lected event breaks a given rule, the Aodh service
will trigger an alert [34]. The service consists of
the following components: (1) An API that provides
access to the warning information stored in the metric
storage. (2) A alarm evaluator that determines when
warnings are triggered due to measurements over a
threshold for a period of time. (3) A alarm notifier
that allows setting warnings based on an evaluation
over a threshold for a collection of patterns.

The Metric Storage: Gnocchi is an open-source
time series database [35]. It attempts to solve stor-
ing problems and index time series measurements of
OpenStack resources on a large scale. Gnocchi deploys
an unique approach to time series storage: instead of
storing raw data points, it aggregates (average, mini-
mum, etc.) them before storing them. Since Gnocchi
calculates all measurements as aggregate ones when
collecting, importing, and processing data, data re-
trieval is done quickly by re-reading calculated results
from before.

• Messaging server: In the OpenStack cloud, internal
communication between OpenStack services can be
performed by RabbitMQ [36]. RabbitMQ is an open
source message-oriented middleware that supports
popular communication protocols such as STOMP,
AMQP and MQTT.

V. EVALUATION

To evaluate and validate the functions of the proposed
framework, we performed the implementation described
in Section 4 in the data center of VNU University of
Engineering and Technology (VNU-UET). We also give
some discussions on the results of the experiments.

1. Installing experiment system

The experimental system consists of two main parts: a
deployment of our proposed architecture framework and a
load generator to simulate multiple MQTT clients and load
their work. We create test plans with different scenarios
using the available functionality of the load generator. The
publishers are facsimiled to create MQTT messages and
send them to the LB (HAProxy). In LB turn, it distributes
these messages to a cluster of EMQX brokers according to a
predefined scheduling algorithm. The simulated subscribers
also perform MQTT subscriptions to specific topics in the
cluster by connecting to LB. LB also distributes connection
requests from subscribers to one of the cluster members.
Messages routed from the source to the correct destination
are conducted internally in the cluster as mentioned in
Section 3. Table I shows the configuration values of the
main parameters for HAProxy version 1.8.8 used in the
experiment.

We used Apache JMeter [37] version 5.3 as a load
generator in our tests. It is an open-source tool to measure
the effects of simulation load and evaluate performance.
It supports the experiment of various types of protocols
like REST, HTTP, HTTPS, JMS, FTP, SOAP, etc. Other
protocols can be added to JMeter using plugins. To support
the experiments, we developed an MQTT plugin for JMeter

68



Vol. 2020, No. 2, December

that implements some features of the MQTT 5.0 version
[38]. To perform the stress tests, we used a distributed
experiment model with a primary JMeter server and a
couple of passive JMeter servers. This ensures that there
were no side effects on the performance of the MQTT
clients simulated.

Our OpenStack private cloud is installed in our data cen-
ter for research of VNU-UET. EMQX brokers and JMeter
load generators are installed in cloud-powered virtual ma-
chines. Each EMQX broker instance has 2 vCPU and 2 GB
memory. Each JMeter virtual machine has 8 vCPU and 8
GB memory. We use OpenStack Train, which was released
in 2019. Our OpenStack Cloud is built on 3 physical servers
using an Intel processor. Each physical server has 80 CPU
with 2.4 GHz, 256 GB memory and 1.5 TB storage. CentOS
7 is installed on all physical machines as the host operating
system. On top of that, KVM is used as a base virtualization
solution. For better resource isolation, we install OpenStack
controller services (e.g. Nova, Neutron, Keystone, etc.) on
the dedicated virtual host instead of running them directly
on physical servers. Only the hypervisor service (also
known as OpenStack Nova Compute) manages the running
of virtual machines, which will be installed directly on
the physical servers. In this way, the system services of
the OpenStack cloud itself are completely separate from
the virtual server instances created by the cloud users. In
short, the stress tests performed in our experiments run
on OpenStack virtual servers, which will not impact cloud
performance and vice versa.

2. Experimental scenarios

We conducted experiments with two common scenar-
ios often found in IoT applications using MQTT: Multi-
publisher and Multi- subscriber. Each scenario assesses the
effectiveness of the elasticity performance with two models:
MQTT centralized broker and MQTT clustered broker.

Figure 6. Scenario Multi-publishers on MQTT brokers cluster

TABLE I
MAIN PARAMETERS FOR HAPROXY ARE USED IN THE EXPERIMENTS

Parameters Value Meaning

listen mqtt
Create process "listening" with
the responsibility to wait and
process MQTT packets.

bind *:1883
The "listen" process will wait
on port 1883 from every net-
work.

mode tcp The "listen" process operates
in TCP mode.

maxconn 50000 The maximum number of con-
nections per "listen" accepted.

default_backend emqx_back The name of the rear broker
cluster.

option clitcpka
Turn on sending TCP
keepalive packets on the
client-side.

option srvtcpka
Turn on sending TCP
keepalive packets on the
server-side.

backend emq_back Create a rear broker cluster.

balance roundrobin Scheduling mode in turns with
round.

timeout check 5000
Set the time to wait for addi-
tional check after the connec-
tion has been established.

server emqx_node[i] Identifies the "i" node that par-
ticipates in the cluster.

Figure 7. Multi-Subscriber clustered brokers scenario

a) Multi-publisher scenario

This scenario simulates a large number of IoT devices,
such as smart plugs, publishing telemetry data to a central
smart home system. The plugs are the publishers and the
central smart home system is the subscriber. The threads
are structured like a tree with three levels. The top-level
represents smart houses in a district. The middle level is
the households in a smart house. The wireless access point
in every household allows smart plugs to connect to the
Internet and publish data to a central smart home system.

The last level of the tree is smart plugs that send energy

69



Research and Development on Information and Communication Technology

TABLE II
THE CONFIGURATION PARAMETERS OF THE EMQX BROKER CLUSTER

Parameters Value Meaning

cluster.discovery mcast
Automatically discovers and
creates clusters based on UDP
multicast.

cluster.mcast.addr 239.192.0.1 EMQX multicast address.

cluster.mcast.ports 4369, 4370 EMQX multicast ports.

cluster.mcast.iface 0.0.0.0
Indicates which discovery ser-
vice the local IP address
should link to.

cluster.mcast.ttl 255 Indicates the Time-To-Live
value of multicast.

cluster.mcast.loop on
Indicates if multicast packets
have been sent to local loop-
back address.

cluster.autoclean 5m
Indicates the time to wait be-
fore removing inactive nodes
from the cluster.

measurements of devices to Wireless access points. A lower
topic level added below is the measure level that represents
telemetry parameters such as power consumption (kWh).
The experiment defines 40 partitions of topics including:

• 1 root topic for smart house “SmartHouse”
• 3 topics “Household” for each smart house
• 30 topics “SmartPlug” for each household
• 10 topics “Parameter” for each smart plug

Thus, a partition of the topic represents 90 smart plugs
and each plug publishes 10 telemetry parameters. We
have 3600 smart plugs totals in the whole scenario. The
experiment for this scenario is depicted in Figure 6.

b) Multi-subscriber scenario

This scenario also simulates a large number of smart
plugs controlled by a central smart home system. These
smart plugs are subscribers and the central smart home
system is the publisher. “SmartPlug” provides bidirectional
communication. The end users and the smart house center
can send commands to the plugs. Besides, the smart plugs
can also respond to these commands, an indicator of
an ON/OFF update, for example. The topics are divided
into a couple of levels like Multi-publisher scenario. We
also define topic partitions presenting 3600 smart plugs
providing a control interface, each partition includes:

• 1 root topic for smart house “SmartHouse”
• 3 topics “Household” for each smart house
• 30 topics “SmartPlug” for each household
• 1 topic “Command” for each smart plug

The experiment for Multi-subscriber is depicted in Figure
7.

Figure 8. Without Elasticity: Average %CPU Usage of the Multi-Publisher
Scenario

Figure 9. Average %CPU Usage of Multi-Publisher Scenario with the
Centralized Broker

Figure 10. Average %CPU Usage of the Multi-Publisher Scenario with
the Clustered Brokers with Elasticity

3. The results

MQTT workloads are created by editing JMeter scripts.
The workload starts with a short warm-up and then in-
creases significantly as MQTT clients quickly join the
simulation. The EMQX broker is already configured follow-
ing suggestions from EMQX documentation. We chose IP
multicast methods for automatic node-discovery and auto-

70



Vol. 2020, No. 2, December

join cluster mechanisms. Table II shows the configuration
parameters of the EMQX broker cluster. The scheduling
algorithm for HAProxy is installed as roundrobin (delivered
sequentially in turn).

Ceilometer, Aodh, and Gnocchi were configured to mea-
sure and store measurements of average %CPU utilization
and the number of virtual CPUs (vCPU). Upper and lower
thresholds for average %CPU utilization are set to 80% and
25% respectively. It means that if average %CPU utilization
breaks the thresholds and the events caught by Ceilometer
and Aodh, a notification is sent to Heat for conducting a
corresponding elasticity action such as scaling in or out.
Actually, Heat has to ask other OpenStack services such as
Nova, Keystone or Glance to get the elasticity actions done
synchronously. Elasticity plan configured in Heat ensures
the number of VMs always in range of 1 to 3.

We used two JMeter client machines for distributed tests.
In each client machine, a maximum of 5 JVM processes are
allowed to initiate. According to the test scenarios, each
process is responsible for running 3600 MQTT clients.
Therefore, the maximum 36000 MQTT clients can be
started and run in two client machines. To increase saturated
probability of the brokers, QoS level of publishing and
subscribing MQTT messages is fixed to 2 and “clean
session” flag set to FALSE in all experiments.

a) Multi-Publisher scenario

In the case of using a centralized MQTT broker, there
is only one subscriber per topic partition. This subscriber
listens to all the topics of the partition by subscribing
to “SmartHouse/#” with wildcard mask “#” denoting all
subtopics of the root topic “SmartHouse”. One publisher
is created for every topic “SmartPlug” sending messages
to the topics “Parameter” below the topic “SmartPlug”.
In total, 3600 publishers send messages to 36000 topics
“Parameter” at a steady rate which is one message/sec-
ond. In the clustered case, the multi-publisher scenario is
tested with a cluster of two brokers B0 and B1 (B1 will
be added dynamically when needed). Publishers (90 each
partition) and subscribers (one each partition) are equally
load-balanced across the two brokers.

Figure 8 shows the average %CPU utilization in both
centralized and clustered cases without elasticity. We see
that the MQTT system with one broker (2vCPU) is easy
to be saturated. Adding one more broker (4vCPU totally)
to form the cluster can help resolving the problem. On
the other hand, to compare service quality improvement of
centralized cases with inelastic clustering using 2 brokers,
we performed the experiment 20 times with the average
time to complete a scenario which is 6 minutes in the
centralized case and 4 minutes 30 seconds in the inelastic
clustering case, respectively (down 25%). In both cases, the

packet publication rate is halved to avoid brokers saturation
which is very likely in centralized cases. In the centralized
case, we see in Figure 9 that the average %CPU utilization
of the broker reaches saturation after a couple of minutes
(at the 1st minute). At this point, the dropped message rate
starts to increase. With elasticity, operating cost reduces
since we do not have to always maintain multiple brokers
(clustered brokers). In Figure 10, we see an elasticity effort
to mitigate the pressure performed by our system. One
virtual machine of MQTT broker B1 is created to share
the workload. This broker automatically joins the cluster
created beforehand by B0 using the multicast method.
The change in the topology is announced to HAProxy for
reloading its configuration. The reloading process needs to
be used instead of restarting one in order to lower the server
downtime as much as possible. After reloading, HAProxy
recognizes the new server and distributes messages to all
load-balancing members. At the end, the average %CPU
utilization of the broker reduces under the lower threshold
after a period of time. Thus, we see another elasticity action
(scaling in) at this time of the simulation when MQTT
clients are finished or terminated. At this point when the
workload goes under 25%, the number of VMs is decreased
to one for minimizing operating cost.

Figure 11. Without Elasticity: Average %CPU Usage of the Multi-
Subscriber Scenario

b) Multi-Subscriber scenario

In the case of centralized brokers, there is only one
publisher per topic partition. This publisher sends messages
to all topics of the partition at a steady speed. A publisher
is created for each "SmartPlug" topic. Each publisher
receives a message from the "Command" topic under the
“SmartPlug” topic. On all the partitions, 3600 publisher
received messages from 3600 "Command" topics at a steady
speed. In the case of the cluster brokers, the multi-publisher
scenario is tested with a group of two MQTT brokers B0
and B1 (B1 dynamically added as needed). The subscribers
(90 per partition) and the publisher (each partition has only

71



Research and Development on Information and Communication Technology

Figure 12. Average %CPU Usage of Multi-Subscriber Scenario with the
Centralized Broker

Figure 13. Average %CPU Usage of the Multi-Subscriber Scenario with
the Clustered Brokers with Elasticity

one publisher) are load balanced and distributed evenly to
the two brokers B0 and B1.

Figure 11 shows the average %CPU usage in both
centralized and cluster cases which do not have elasticity.
We saw the same behavior as that of the multi-publisher
scenario. Adding one more broker to the cluster is not really
helpful, but two brokers (6 vCPU) might solve the problem.
On the other hand, for the comparison of service quality
improvement between centralized and inelastic clustering
cases using 3 brokers, we performed the experiment 20
times with the average execution time to complete the
scenario which is 6 minutes 30 seconds in the case of
centralization and 5 minutes 50 seconds in the case of
inelastic clustering, respectively (down 10%). In both cases,
the message publication rate is halved to avoid brokers
saturation which is very easy to occur in centralized case.

In the centralized case, we also see clearly in Figure 12
that the broker’s average %CPU usage will saturate after
a few minutes (at the second minute). At this point, the
proportion of unsolicited discarded messages also begins
to increase.

With elasticity, we also see the same behavior shown
in Figure 13, which is the same for many publishers.
The scaling action with two brokers is triggered later than
the multi-publisher scenario. These two brokers are added
sequentially by Heat service. A one-minute gap is set
between broker additions to avoid rapid fluctuations of
resources. Average CPU usage stayed above the threshold
for a longer time than the multi-publishers scenario. The
reason is that the combination of the QoS 2 level and the
“clean session” flag set to FALSE will keep the messages
at the brokers for a longer time, so the more the publishers
run in parallel, the busier the brokers are.

VI. CONCLUSION

We have presented a flexible architectural framework
that can support scaling functionality for distributed MQTT
brokerage services in IoT applications. Our architectural
framework provides service elasticity by using open source
software that is currently commonly used in the cloud
computing environment. Our elasticity MQTT brokerage
service has been successfully deployed using EMQX as
the MQTT brokers and OpenStack as a private cloud
environment. Experiments are conducted by generating the
IoT traffic for the service at different load levels to observe
changes in the number of broker instances. Our experimen-
tal results show that the proposed MQTT brokerage service
adapts well to the end-user load changes while maintaining
low operating costs.

ACKNOWLEDGEMENT

This research is funded by Graduate University
of Science and Technology under grant number
GUST.STS.ĐT2019-TT02.

REFERENCES

[1] N. Sharma and D. Panwar, ”Green IoT: Advancements and Sus-
tainability with Environment by 2050,” 2020 8th International
Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO), pp. 1127-1132, 2020.

[2] V. Turner, D. Reinsel, J.F. Gantz, S. Minton, ”The Digital Universe
of Opportunities: Rich Data and the Increasing Value of the In-
ternet of Things,” Journal of Telecommunications and the Digital
Economy IDC Report Apr, 2014.

[3] MQ Telemetry Transport, ”http://mqtt.org,” visited on Oct, 2020.
[4] P. Mell and T. Grance, ”The NIST definition of cloud computing

(draft),” NIST special publication, vol. 800, p. 145, (2011).
[5] P. Th. Eugster, P. A. Felber, R. Guerraoui, A. Kermarrec, ”The

many faces of publish/subscribe”. ACM ACM Computing Surveys,
Vol. 35, No. 2, pp. 114-131, 2003

[6] R. Kawaguchi, M. Bandai, ”Edge Based MQTT Broker Architec-
ture for Geographical IoT Applications,” 2020 International Con-
ference on Information Networking (ICOIN), pp. 232-235, 2020.

72



Vol. 2020, No. 2, December

[7] V. Gupta, S. Khera, N. Turk, ”MQTT protocol employing IOT
based home safety system with ABE encryption,” Multimed Tools
Appl, vol. 80, pp. 1-19, 2020.

[8] Mukambikeshwari, A. Poojary, ”Smart Watering System Using
MQTT Protocol in IoT,” Advances in Artificial Intelligence and
Data Engineering. Advances in Intelligent Systems and Computing,
vol. 1133, pp. 1415-1424, 2020.

[9] Y. C. See, E. X. Ho, ”IoT-Based Fire Safety System Using MQTT
Communication Protocol,” ijie, vol. 12, no. 6, pp. 207-215, 2020.

[10] S. Nazir, M. Kaleem, ”Reliable Image Notifications for Smart
Home Security with MQTT,” International Conference on Infor-
mation Science and Communication Technology (ICISCT), pp. 1-5,
2019).

[11] P. Alqinsi, I. J. M. Edward, N. Ismail, W. Darmalaksana, ”IoT-
Based UPS Monitoring System Using MQTT Protocols,” 4th Inter-
national Conference on Wireless and Telematics (ICWT), pp. 1-5,
2018.

[12] Comparison of MQTT Brokers,
”https://tewarid.github.io/2019/03/21/comparison-of-mqtt-
brokers.html,” visited on Oct, 2020.

[13] M. Collina, G. E. Corazza, A. Vanelli-Coralli, ”Introducing the
QEST broker: Scaling the IoT by bridging MQTT and REST,”
2012 IEEE 23rd International Symposium on Personal, Indoor and
Mobile Radio Communications - (PIMRC), pp. 36-41, 2012.

[14] A. Schmitt, F. Carlier, V. Renault, ”Data Exchange with the MQTT
Protocol: Dynamic Bridge Approach,” 2019 IEEE 89th Vehicular
Technology Conference (VTC2019-Spring), pp. 1-5, 2019.

[15] A. M. Zambrano V, M. Zambrano V, E.L.O. Mejía, X. Calderón
H, ”SIGPRO: A Real-Time Progressive Notification System Using
MQTT Bridges and Topic Hierarchy for Rapid Location of Missing
Persons,” in IEEE Access, vol. 8, pp. 149190-149198, 2020.

[16] The features that various MQTT servers (brokers) support,
”https://github.com/mqtt/mqtt.github.io/wiki/server-support,” vis-
ited on Oct, 2020.

[17] P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J.
Haga, D. Kobayashi, ”A scalable and low-cost MQTT broker clus-
tering system,” 2017 2nd International Conference on Information
Technology (INCIT), pp. 1-5, 2017.

[18] Z. Y. Thean, V. Voon Yap, P. C. Teh, ”Container-based MQTT
Broker Cluster for Edge Computing,” 2019 4th International Con-
ference and Workshops on Recent Advances and Innovations in
Engineering (ICRAIE), pp. 1-6, 2019.

[19] A. Detti, L. Funari, N. Blefari-Melazzi, ”Sub-Linear Scalability of
MQTT Clusters in Topic-Based Publish-Subscribe Applications,”
in IEEE Transactions on Network and Service Management, vol.
17, no. 3, pp. 1954-1968, 2020.

[20] M. H. Fourati, S. Marzouk, K. Drira and M. Jmaiel, ”DOCK-
ERANALYZER : Towards Fine Grained Resource Elasticity for
Microservices-Based Applications Deployed with Docker,” 20th
International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), pp. 220-225, 2019.

[21] R.R. Righi, E, Correa, M.M. Gomes, C.A. Costa, ”Enhancing
performance of IoT applications with load prediction and cloud
elasticity,” Future Generation Computer Systems, Volume 109,P.
689-701, 2019.

[22] L.M. Pham, ”Autonomic fine-grained migration and replication
of component-based applications across multi-clouds,” in Proc.
of 2015 2nd National Foundation for Science and Technology
Development Conference on Information and Computer Science
(NICS), pp. 5-10, 2015.

[23] M. Nardelli, V. Cardellini, E. Casalicchio, ”Multi-Level Elastic
Deployment of Containerized Applications in Geo-Distributed En-
vironments,” 2018 IEEE 6th International Conference on Future
Internet of Things and Cloud (FiCloud), pp. 1-8, 2018.

[24] V.F. Rodrigues, I.G. Wendt, R.R. Righi, C.A. Costa, J.L.V. Bar-
bosa, A.M. Alberti, ”Brokel: Towards enabling multi-level cloud
elasticity on publish/subscribe brokers,” International Journal of
Distributed Sensor Networks, vol. 13, no. 8, 2017.

[25] S. Vavassori, J. Soriano, R. Fernández, ”Enabling Large-Scale IoT-
Based Services through Elastic Publish/Subscribe”. Sensors, pp.
17-2148, 2017.

[26] A distributed, reliable key-value store,
”https://etcd.io/docs/v3.4.0/,” visited on Oct, 2020.

[27] D. Roure, C. Goble, ”Software Design for Empowering Scientists,”
IEEE Software, vol. 26, no. 01, pp. 88-95, 2009.

[28] EMQX Broker, ”https://docs.emqx.io/broker/latest/en/,’ visited on
Oct, 2020.

[29] Kubernetes, ”https://kubernetes.io/,” visited on Oct, 2020.
[30] HAProxy, ”https://www.haproxy.com/solutions/load-balancing/,”

visited on Oct, 2020.
[31] OpenStack: Open Source Cloud Computing Infrastructure,

”https://www.openstack.org/,” visited on Oct, 2020.
[32] OpenStack Heat, ”https://docs.openstack.org/heat/latest/,” visited

on Oct, 2020.
[33] OpenStack Ceilometer, ” https://docs.openstack.org/ceilomet-

er/latest/,” visited on Oct, 2020.
[34] OpenStack Aodh, ” https://docs.openstack.org/aodh/latest/,” vis-

ited on Oct, 2020.
[35] Gnocchi - Metric as a Service, ”https://gnocchi.xyz/,” visited on

Oct, 2020.
[36] RabbitMQ, ”https://www.rabbitmq.com/,” visited on Oct, 2020.
[37] Apache JMeter, ” https://jmeter.apache.org/,” visited on Oct, 2020.
[38] L.M. Pham, T.T. Nguyen, M.D. Tran, ”A Benchmarking Tool for

Elastic MQTT Brokers in IoT Applications,” International Journal
of Information and Communication Sciences. Vol. 4, No. 4, pp. 59-
67, 2019

Linh Manh Pham is a lecturer at Univer-
sity of Engineering and Technology, Viet-
nam National University, Hanoi (VNU).
He was a postdoctoral researcher at Inria,
France. He earned an MSc. in Computer
Science in the USA and a Ph.D. in Cloud
Computing in France. His area of research

is Cloud/Fog Computing, and he intends to highlight the benefits
of this relatively novel field of research.
Email: linhmp@vnu.edu.vn.

Tien-Quang Hoang is with Hanoi Peda-
gogical University 2. He is also a researcher
of Center of Multidisciplinary Integrated
Technologies for Field Monitoring, Univer-
sity of Engineering and Technology, Viet-
nam National University, Hanoi (VNU-
UET). He has a Master degree in Computer

Networks and Data Communication at VNU-UET.
Email:hoangtienquang@hpu2.edu.vn.

73



Research and Development on Information and Communication Technology

Xuan-Truong Nguyen is with Hanoi Ped-
agogical University 2 as a lecturer. He is
also a researcher of Center of Multidisci-
plinary Integrated Technologies for Field
Monitoring, University of Engineering and
Technology, Vietnam National University,
Hanoi (VNU-UET). He has a Master de-

gree in Software Engineering at VNU-UET.
Email: nguyenxuantruong@hpu2.edu.vn.

74


